diff --git a/joss.06742/10.21105.joss.06742.crossref.xml b/joss.06742/10.21105.joss.06742.crossref.xml
new file mode 100644
index 0000000000..ba1da7efca
--- /dev/null
+++ b/joss.06742/10.21105.joss.06742.crossref.xml
@@ -0,0 +1,301 @@
+
+
+
+ 20240723203528-266f6c92416988586929e83e4b250decc98a432e
+ 20240723203528
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 07
+ 2024
+
+
+ 9
+
+ 99
+
+
+
+ Clouddrift: a Python package to accelerate the use of
+Lagrangian data for atmospheric, oceanic, and climate sciences
+
+
+
+ Shane
+ Elipot
+ https://orcid.org/0000-0001-6051-5426
+
+
+ Philippe
+ Miron
+ https://orcid.org/0000-0002-8520-6221
+
+
+ Milan
+ Curcic
+ https://orcid.org/0000-0002-8822-7749
+
+
+ Kevin
+ Santana
+ https://orcid.org/0009-0003-8383-1212
+
+
+ Rick
+ Lumpkin
+ https://orcid.org/0000-0002-6690-1704
+
+
+
+ 07
+ 23
+ 2024
+
+
+ 6742
+
+
+ 10.21105/joss.06742
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.12583739
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/6742
+
+
+
+ 10.21105/joss.06742
+ https://joss.theoj.org/papers/10.21105/joss.06742
+
+
+ https://joss.theoj.org/papers/10.21105/joss.06742.pdf
+
+
+
+
+
+ Statistics from Lagrangian
+observations
+ LaCasce
+ Progress in Oceanography
+ 1
+ 77
+ 10.1016/j.pocean.2008.02.002
+ 0079-6611
+ 2008
+ LaCasce, J. H. (2008). Statistics
+from Lagrangian observations. Progress in Oceanography, 77(1), 1–29.
+https://doi.org/10.1016/j.pocean.2008.02.002
+
+
+ Lagrangian ocean analysis: Fundamentals and
+practices
+ van Sebille
+ Ocean Modelling
+ 121
+ 10.1016/j.ocemod.2017.11.008
+ 1463-5003
+ 2018
+ van Sebille, E., Griffies, S. M.,
+Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B.,
+Chassignet, E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös,
+K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A. W., Kjellsson,
+J., Koszalka, I. M., Lange, M., … Zika, J. D. (2018). Lagrangian ocean
+analysis: Fundamentals and practices. Ocean Modelling, 121, 49–75.
+https://doi.org/10.1016/j.ocemod.2017.11.008
+
+
+ Hourly location, current velocity, and
+temperature collected from Global Drifter Program drifters
+world-wide
+ Elipot
+ 10.25921/x46c-3620
+ 2022
+ Elipot, S., Sykulski, A., Lumpkin,
+R., Centurioni, L., & Pazos, M. (2022). Hourly location, current
+velocity, and temperature collected from Global Drifter Program drifters
+world-wide. NOAA National Centers for Environmental Information.
+https://doi.org/10.25921/x46c-3620
+
+
+ The Parcels v2.0 Lagrangian framework: New
+field interpolation schemes
+ Delandmeter
+ Geoscientific Model
+Development
+ 8
+ 12
+ 10.5194/gmd-12-3571-2019
+ 2019
+ Delandmeter, P., & Sebille, E.
+van. (2019). The Parcels v2.0 Lagrangian framework: New field
+interpolation schemes. Geoscientific Model Development, 12(8),
+3571–3584.
+https://doi.org/10.5194/gmd-12-3571-2019
+
+
+ NOAA’s HYSPLIT atmospheric transport and
+dispersion modeling system
+ Stein
+ Bulletin of the American Meteorological
+Society
+ 12
+ 96
+ 10.1175/BAMS-D-14-00110.1
+ 2015
+ Stein, A. F., Draxler, R. R., Rolph,
+G. D., Stunder, B. J., Cohen, M. D., & Ngan, F. (2015). NOAA’s
+HYSPLIT atmospheric transport and dispersion modeling system. Bulletin
+of the American Meteorological Society, 96(12), 2059–2077.
+https://doi.org/10.1175/BAMS-D-14-00110.1
+
+
+ Argopy: A Python library for Argo ocean data
+analysis
+ Maze
+ Journal of Open Source
+Software
+ 53
+ 5
+ 10.21105/joss.02425
+ 2020
+ Maze, G., & Balem, K. (2020).
+Argopy: A Python library for Argo ocean data analysis. Journal of Open
+Source Software, 5(53), 2425.
+https://doi.org/10.21105/joss.02425
+
+
+ jLab: A data analysis package for
+Matlab
+ Lilly
+ 10.5281/zenodo.4547006
+ 2021
+ Lilly, J. M. (2021). jLab: A data
+analysis package for Matlab.
+https://doi.org/10.5281/zenodo.4547006
+
+
+ Xarray: ND labeled Arrays and Datasets in
+Python
+ Hoyer
+ Journal of Open Research
+Software
+ 1
+ 5
+ 10.5334/jors.148
+ 2017
+ Hoyer, S., & Hamman, J. (2017).
+Xarray: ND labeled Arrays and Datasets in Python. Journal of Open
+Research Software, 5(1), 10–10.
+https://doi.org/10.5334/jors.148
+
+
+ Array programming with NumPy
+ Harris
+ Nature
+ 7825
+ 585
+ 10.1038/s41586-020-2649-2
+ 2020
+ Harris, C. R., Millman, K. J., Walt,
+S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
+Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S.,
+Kerkwijk, M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M.,
+Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy.
+Nature, 585(7825), 357–362.
+https://doi.org/10.1038/s41586-020-2649-2
+
+
+ SciPy 1.0: Fundamental Algorithms for
+Scientific Computing in Python
+ Virtanen
+ Nature Methods
+ 17
+ 10.1038/s41592-019-0686-2
+ 2020
+ Virtanen, P., Gommers, R., Oliphant,
+T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
+P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
+J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
+Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental
+Algorithms for Scientific Computing in Python. Nature Methods, 17,
+261–272.
+https://doi.org/10.1038/s41592-019-0686-2
+
+
+ Pandas-dev/pandas: Pandas
+ The pandas development team
+ 10.5281/zenodo.3509134
+ 2024
+ The pandas development team. (2024).
+Pandas-dev/pandas: Pandas (latest). Zenodo.
+https://doi.org/10.5281/zenodo.3509134
+
+
+ Data Structures for Statistical Computing in
+Python
+ McKinney
+ Proceedings of the 9th Python in Science
+Conference
+ 10.25080/Majora-92bf1922-00a
+ 2010
+ McKinney, Wes. (2010). Data
+Structures for Statistical Computing in Python. In Stéfan van der Walt
+& Jarrod Millman (Eds.), Proceedings of the 9th Python in Science
+Conference (pp. 56–61).
+https://doi.org/10.25080/Majora-92bf1922-00a
+
+
+ Pangeo Forge: Crowdsourcing Analysis-Ready,
+Cloud Optimized Data Production
+ Stern
+ Frontiers in Climate
+ 3
+ 10.3389/fclim.2021.782909
+ 2624-9553
+ 2022
+ Stern, C., Abernathey, R., Hamman,
+J., Wegener, R., Lepore, C., Harkins, S., & Merose, A. (2022).
+Pangeo Forge: Crowdsourcing Analysis-Ready, Cloud Optimized Data
+Production. Frontiers in Climate, 3.
+https://doi.org/10.3389/fclim.2021.782909
+
+
+
+
+
+
diff --git a/joss.06742/10.21105.joss.06742.pdf b/joss.06742/10.21105.joss.06742.pdf
new file mode 100644
index 0000000000..577e99bd1c
Binary files /dev/null and b/joss.06742/10.21105.joss.06742.pdf differ
diff --git a/joss.06742/paper.jats/10.21105.joss.06742.jats b/joss.06742/paper.jats/10.21105.joss.06742.jats
new file mode 100644
index 0000000000..dbea791963
--- /dev/null
+++ b/joss.06742/paper.jats/10.21105.joss.06742.jats
@@ -0,0 +1,615 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+6742
+10.21105/joss.06742
+
+Clouddrift: a Python package to accelerate the use of
+Lagrangian data for atmospheric, oceanic, and climate
+sciences
+
+
+
+https://orcid.org/0000-0001-6051-5426
+
+Elipot
+Shane
+
+
+
+
+https://orcid.org/0000-0002-8520-6221
+
+Miron
+Philippe
+
+
+
+
+https://orcid.org/0000-0002-8822-7749
+
+Curcic
+Milan
+
+
+
+
+
+https://orcid.org/0009-0003-8383-1212
+
+Santana
+Kevin
+
+
+
+
+https://orcid.org/0000-0002-6690-1704
+
+Lumpkin
+Rick
+
+
+
+
+
+Rosenstiel School of Marine, Atmospheric, and Earth
+Science, University of Miami
+
+
+
+
+Florida State University
+
+
+
+
+Frost Institute for Data Science and Computing, University
+of Miami
+
+
+
+
+NOAA Atlantic Oceanographic and Meteorological
+Laboratory
+
+
+
+
+10
+4
+2024
+
+9
+99
+6742
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+climate
+ocean
+atmosphere
+ragged array
+
+
+
+
+
+ Summary
+
Lagrangian data in Earth sciences are unique because they do not
+ conform to established standards related to dimensions, coordinates,
+ and organizational structures. In addition, because they convolve
+ spatial and temporal information, Lagrangian data need specific
+ processing and analysis tools for their scientific and operational
+ use. The clouddrift Python library addresses these challenges by
+ offering tools to process and analyze Lagrangian data with an emphasis
+ on the ragged array representation.
+
+
+ Statement of need
+
In Earth, Ocean, Geo-, and Atmospheric Science, Eulerian
+ data typically refers to a type of data acquired or simulated
+ at a particular fixed point or region in space. Eulerian data are
+ defined on fixed spatiotemporal grids with monotonic coordinates
+ (e.g. latitude, longitude, depth, time) for which popular Python tools
+ such as
+ Xarray
+ (Hoyer
+ & Hamman, 2017) are naturally suited. In contrast,
+ Lagrangian data are acquired by observing platforms
+ that move with the flow they are embedded in, for example, uncrewed
+ platforms, vehicles, virtual particles, atmospheric phenomena such as
+ tropical cyclones, and even animals that gather data along their
+ natural but complex paths. Because such paths traverse both spatial
+ and temporal dimensions, Lagrangian data often convolve spatial and
+ temporal information that cannot consistently and readily be
+ organized, cataloged, and stored in common data structures and file
+ formats with the help of common libraries and standards. As an
+ example, the concepts of dimensions and coordinates for Lagrangian
+ data are ambiguous and not clearly established. As such, for both data
+ generators and data users, Lagrangian data present challenges that the
+ clouddrift Python library aims to overcome.
+
The clouddrift library is distinct from other tools designed to
+ simulate particle trajectories in oceanic and atmospheric models, such
+ as
+ OceanParcels
+ (Delandmeter
+ & Sebille, 2019), or
+ HYSPLIT
+ (Stein
+ et al., 2015). Unlike these softwares, clouddrift’s primary
+ intent is to provide specific tools to analyze data from observational
+ and numerical Lagrangian experiments. The second intent is to
+ transform Lagrangian datasets into analysis-ready cloud-optimized
+ datasets using consistent data structures and methodologies, an
+ objective similar to
+ Pangeo-Forge
+ for Earth data
+ (Stern
+ et al., 2022). While clouddrift shares some goals with argopy
+ (Maze
+ & Balem, 2020), a Python library for accessing and
+ manipulating the Argo dataset (a specific Lagrangian oceanographic
+ dataset), clouddrift aims to be dataset-agnostic and extends beyond
+ just Earth data. Additionally, clouddrift incorporates oceanographic
+ analysis functions from jLab, a Matlab data analysis package
+ (Lilly,
+ 2021), in compliance with its license. Clouddrift core Python
+ dependencies include NumPy
+ (Harris
+ et al., 2020) and SciPy
+ (Virtanen
+ et al., 2020) for data analysis, as well as Xarray
+ (Hoyer
+ & Hamman, 2017), pandas
+ (McKinney,
+ 2010;
+ The
+ pandas development team, 2024), and
+ Awkward
+ Array for its data processing and manipulation
+ functions.
+
+
+ Scope and key features
+
The scope of the clouddrift library includes:
+
+
+
Working with contiguous ragged array representations of
+ data, whether they originate from geosciences or any other
+ field. Ragged array representations are useful when the
+ data lengths of the instances of a feature (variable) are not all
+ equal. With such representations the data for each feature are
+ stored contiguously in memory, and the number of elements that
+ each feature has is contained in a count variable which clouddrift
+ calls rowsize. A graphical representation of the
+ application of the ragged array structure to Lagrangian data is
+ displayed in
+ [fig:raggedarray].
+
+
+
+
Ragged array representation for Lagrangian data.
+
+
+
+
+
+
+
Delivering functions and methods to perform scientific
+ analysis of Lagrangian data, oceanographic or otherwise
+ (LaCasce,
+ 2008;
+ van
+ Sebille et al., 2018), structured as ragged arrays or
+ otherwise. A straightforward example of Lagrangian analysis
+ provided by clouddrift is the derivation of Lagrangian velocities
+ from a sequence of Lagrangian positions, and vice versa. Another
+ more involved example is the discovery of pairs of Lagrangian data
+ prescribed by distances in space and time. Both of these methods
+ are currently available with clouddrift.
+
+
+
Example: The following example illustrates how to
+ combine two functions from the clouddrift library in order to
+ calculate Lagrangian velocities from ragged arrays of Cartesian
+ positions and times that share row sizes 2, 3, and 4:
Processing publicly available Lagrangian datasets into
+ the common ragged array data structure and format. Through
+ data adapters, this type of processing includes
+ not only converting Lagrangian data from typically regular arrays
+ to ragged arrays but also aggregating data and metadata from
+ multiple data files into a single data file. The canonical example
+ of the clouddrift library is constituted of the data from the NOAA
+ Global Drifter Program
+ (Elipot
+ et al., 2022).
+
+
+
Example: The following example locally builds an
+ xarray dataset, with ragged array representations, of the latest
+ dataset of position, velocity, and sea surface temperature from the
+ Global Drifter Program quality-controlled 6-hour interpolated data
+ from ocean surface drifting buoys:
Making cloud-optimized ragged array datasets easily
+ accessible. This involves opening in a computing
+ environment, without unnecessary download, Lagrangian datasets
+ available from cloud servers, as well as opening Lagrangian
+ datasets that have been seamlessly processed by the clouddrift
+ data adapters.
+
+
+
Example: The following simple command remotely
+ opens without downloading the hourly location, current velocity, and
+ temperature collected from Global Drifter Program drifters worldwide,
+ distributed as a Zarr archive with ragged array representations and
+ stored in cloud storage as part of the
+ Registry
+ of Open Data on AWS:
The development of the clouddrift library is a result of
+ NSF
+ Award #2126413: EarthCube Capabilities: CloudDrift: a platform
+ for accelerating research with Lagrangian climate
+ data. SE, PM, MC, and KS have been partially
+ supported by this award.
+
+
+
+
+
+
+
+
+ LaCasceJ. H.
+
+ Statistics from Lagrangian observations
+ Progress in Oceanography
+ 2008
+ 77
+ 1
+ 0079-6611
+ https://www.sciencedirect.com/science/article/pii/S0079661108000232
+ 10.1016/j.pocean.2008.02.002
+ 1
+ 29
+
+
+
+
+
+ van SebilleErik
+ GriffiesStephen M.
+ AbernatheyRyan
+ AdamsThomas P.
+ BerloffPavel
+ BiastochArne
+ BlankeBruno
+ ChassignetEric P.
+ ChengYu
+ CotterColin J.
+ DeleersnijderEric
+ DöösKristofer
+ DrakeHenri F.
+ DrijfhoutSybren
+ GaryStefan F.
+ HeeminkArnold W.
+ KjellssonJoakim
+ KoszalkaInga Monika
+ LangeMichael
+ LiqueCamille
+ MacGilchristGraeme A.
+ MarshRobert
+ Mayorga AdameC. Gabriela
+ McAdamRonan
+ NencioliFrancesco
+ ParisClaire B.
+ PiggottMatthew D.
+ PoltonJeff A.
+ RühsSiren
+ ShahSyed H. A. M.
+ ThomasMatthew D.
+ WangJinbo
+ WolframPhillip J.
+ ZannaLaure
+ ZikaJan D.
+
+ Lagrangian ocean analysis: Fundamentals and practices
+ Ocean Modelling
+ 2018
+ 121
+ 1463-5003
+ https://www.sciencedirect.com/science/article/pii/S1463500317301853
+ 10.1016/j.ocemod.2017.11.008
+ 49
+ 75
+
+
+
+
+
+ ElipotShane
+ SykulskiAdam
+ LumpkinRick
+ CenturioniLuca
+ PazosMayra
+
+ Hourly location, current velocity, and temperature collected from Global Drifter Program drifters world-wide
+ NOAA National Centers for Environmental Information.
+ 2022
+ https://doi.org/10.25921/x46c-3620
+ 10.25921/x46c-3620
+
+
+
+
+
+ DelandmeterP.
+ SebilleE. van
+
+ The Parcels v2.0 Lagrangian framework: New field interpolation schemes
+ Geoscientific Model Development
+ 2019
+ 12
+ 8
+ https://gmd.copernicus.org/articles/12/3571/2019/
+ 10.5194/gmd-12-3571-2019
+ 3571
+ 3584
+
+
+
+
+
+ SteinAriel F
+ DraxlerRoland R
+ RolphGlenn D
+ StunderBarbara JB
+ CohenMark D
+ NganFong
+
+ NOAA’s HYSPLIT atmospheric transport and dispersion modeling system
+ Bulletin of the American Meteorological Society
+ American Meteorological Society
+ 2015
+ 96
+ 12
+ 10.1175/BAMS-D-14-00110.1
+ 2059
+ 2077
+
+
+
+
+
+ MazeGuillaume
+ BalemKevin
+
+ Argopy: A Python library for Argo ocean data analysis
+ Journal of Open Source Software
+ The Open Journal
+ 2020
+ 5
+ 53
+ https://doi.org/10.21105/joss.02425
+ 10.21105/joss.02425
+ 2425
+
+
+
+
+
+
+ LillyJonathan M.
+
+ jLab: A data analysis package for Matlab
+ 2021
+ http://www.jmlilly.net/software
+ 10.5281/zenodo.4547006
+
+
+
+
+
+ HoyerStephan
+ HammanJoe
+
+ Xarray: ND labeled Arrays and Datasets in Python
+ Journal of Open Research Software
+ 2017
+ 5
+ 1
+ 10.5334/jors.148
+ 10
+ 10
+
+
+
+
+
+ HarrisCharles R.
+ MillmanK. Jarrod
+ WaltStéfan J. van der
+ GommersRalf
+ VirtanenPauli
+ CournapeauDavid
+ WieserEric
+ TaylorJulian
+ BergSebastian
+ SmithNathaniel J.
+ KernRobert
+ PicusMatti
+ HoyerStephan
+ KerkwijkMarten H. van
+ BrettMatthew
+ HaldaneAllan
+ RíoJaime Fernández del
+ WiebeMark
+ PetersonPearu
+ Gérard-MarchantPierre
+ SheppardKevin
+ ReddyTyler
+ WeckesserWarren
+ AbbasiHameer
+ GohlkeChristoph
+ OliphantTravis E.
+
+ Array programming with NumPy
+ Nature
+ Springer Science; Business Media LLC
+ 202009
+ 585
+ 7825
+ https://doi.org/10.1038/s41586-020-2649-2
+ 10.1038/s41586-020-2649-2
+ 357
+ 362
+
+
+
+
+
+ VirtanenPauli
+ GommersRalf
+ OliphantTravis E.
+ HaberlandMatt
+ ReddyTyler
+ CournapeauDavid
+ BurovskiEvgeni
+ PetersonPearu
+ WeckesserWarren
+ BrightJonathan
+ van der WaltStéfan J.
+ BrettMatthew
+ WilsonJoshua
+ MillmanK. Jarrod
+ MayorovNikolay
+ NelsonAndrew R. J.
+ JonesEric
+ KernRobert
+ LarsonEric
+ CareyC J
+ Polatİlhan
+ FengYu
+ MooreEric W.
+ VanderPlasJake
+ LaxaldeDenis
+ PerktoldJosef
+ CimrmanRobert
+ HenriksenIan
+ QuinteroE. A.
+ HarrisCharles R.
+ ArchibaldAnne M.
+ RibeiroAntônio H.
+ PedregosaFabian
+ van MulbregtPaul
+ SciPy 1.0 Contributors
+
+ SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
+ Nature Methods
+ 2020
+ 17
+ 10.1038/s41592-019-0686-2
+ 261
+ 272
+
+
+
+
+
+ The pandas development team
+
+ Pandas-dev/pandas: Pandas
+ Zenodo
+ 202402
+ https://doi.org/10.5281/zenodo.3509134
+ 10.5281/zenodo.3509134
+
+
+
+
+
+ McKinney
+
+ Data Structures for Statistical Computing in Python
+ Proceedings of the 9th Python in Science Conference
+
+ Walt
+ Millman
+
+ 2010
+ 10.25080/Majora-92bf1922-00a
+ 56
+ 61
+
+
+
+
+
+ SternCharles
+ AbernatheyRyan
+ HammanJoseph
+ WegenerRachel
+ LeporeChiara
+ HarkinsSean
+ MeroseAlexander
+
+ Pangeo Forge: Crowdsourcing Analysis-Ready, Cloud Optimized Data Production
+ Frontiers in Climate
+ 2022
+ 3
+ 2624-9553
+ https://www.frontiersin.org/articles/10.3389/fclim.2021.782909
+ 10.3389/fclim.2021.782909
+
+
+
+
+
diff --git a/joss.06742/paper.jats/ragged_array.png b/joss.06742/paper.jats/ragged_array.png
new file mode 100644
index 0000000000..e3e42bb3ec
Binary files /dev/null and b/joss.06742/paper.jats/ragged_array.png differ