This repository has been archived by the owner on Sep 19, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathAbstractQueuedSynchronizer.java
1945 lines (1856 loc) · 79.7 KB
/
AbstractQueuedSynchronizer.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package java.util.concurrent.locks;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RejectedExecutionException;
import jdk.internal.misc.Unsafe;
/**
* Provides a framework for implementing blocking locks and related
* synchronizers (semaphores, events, etc) that rely on
* first-in-first-out (FIFO) wait queues. This class is designed to
* be a useful basis for most kinds of synchronizers that rely on a
* single atomic {@code int} value to represent state. Subclasses
* must define the protected methods that change this state, and which
* define what that state means in terms of this object being acquired
* or released. Given these, the other methods in this class carry
* out all queuing and blocking mechanics. Subclasses can maintain
* other state fields, but only the atomically updated {@code int}
* value manipulated using methods {@link #getState}, {@link
* #setState} and {@link #compareAndSetState} is tracked with respect
* to synchronization.
*
* <p>Subclasses should be defined as non-public internal helper
* classes that are used to implement the synchronization properties
* of their enclosing class. Class
* {@code AbstractQueuedSynchronizer} does not implement any
* synchronization interface. Instead it defines methods such as
* {@link #acquireInterruptibly} that can be invoked as
* appropriate by concrete locks and related synchronizers to
* implement their public methods.
*
* <p>This class supports either or both a default <em>exclusive</em>
* mode and a <em>shared</em> mode. When acquired in exclusive mode,
* attempted acquires by other threads cannot succeed. Shared mode
* acquires by multiple threads may (but need not) succeed. This class
* does not "understand" these differences except in the
* mechanical sense that when a shared mode acquire succeeds, the next
* waiting thread (if one exists) must also determine whether it can
* acquire as well. Threads waiting in the different modes share the
* same FIFO queue. Usually, implementation subclasses support only
* one of these modes, but both can come into play for example in a
* {@link ReadWriteLock}. Subclasses that support only exclusive or
* only shared modes need not define the methods supporting the unused mode.
*
* <p>This class defines a nested {@link ConditionObject} class that
* can be used as a {@link Condition} implementation by subclasses
* supporting exclusive mode for which method {@link
* #isHeldExclusively} reports whether synchronization is exclusively
* held with respect to the current thread, method {@link #release}
* invoked with the current {@link #getState} value fully releases
* this object, and {@link #acquire}, given this saved state value,
* eventually restores this object to its previous acquired state. No
* {@code AbstractQueuedSynchronizer} method otherwise creates such a
* condition, so if this constraint cannot be met, do not use it. The
* behavior of {@link ConditionObject} depends of course on the
* semantics of its synchronizer implementation.
*
* <p>This class provides inspection, instrumentation, and monitoring
* methods for the internal queue, as well as similar methods for
* condition objects. These can be exported as desired into classes
* using an {@code AbstractQueuedSynchronizer} for their
* synchronization mechanics.
*
* <p>Serialization of this class stores only the underlying atomic
* integer maintaining state, so deserialized objects have empty
* thread queues. Typical subclasses requiring serializability will
* define a {@code readObject} method that restores this to a known
* initial state upon deserialization.
*
* <h2>Usage</h2>
*
* <p>To use this class as the basis of a synchronizer, redefine the
* following methods, as applicable, by inspecting and/or modifying
* the synchronization state using {@link #getState}, {@link
* #setState} and/or {@link #compareAndSetState}:
*
* <ul>
* <li>{@link #tryAcquire}
* <li>{@link #tryRelease}
* <li>{@link #tryAcquireShared}
* <li>{@link #tryReleaseShared}
* <li>{@link #isHeldExclusively}
* </ul>
*
* Each of these methods by default throws {@link
* UnsupportedOperationException}. Implementations of these methods
* must be internally thread-safe, and should in general be short and
* not block. Defining these methods is the <em>only</em> supported
* means of using this class. All other methods are declared
* {@code final} because they cannot be independently varied.
*
* <p>You may also find the inherited methods from {@link
* AbstractOwnableSynchronizer} useful to keep track of the thread
* owning an exclusive synchronizer. You are encouraged to use them
* -- this enables monitoring and diagnostic tools to assist users in
* determining which threads hold locks.
*
* <p>Even though this class is based on an internal FIFO queue, it
* does not automatically enforce FIFO acquisition policies. The core
* of exclusive synchronization takes the form:
*
* <pre>
* <em>Acquire:</em>
* while (!tryAcquire(arg)) {
* <em>enqueue thread if it is not already queued</em>;
* <em>possibly block current thread</em>;
* }
*
* <em>Release:</em>
* if (tryRelease(arg))
* <em>unblock the first queued thread</em>;
* </pre>
*
* (Shared mode is similar but may involve cascading signals.)
*
* <p id="barging">Because checks in acquire are invoked before
* enqueuing, a newly acquiring thread may <em>barge</em> ahead of
* others that are blocked and queued. However, you can, if desired,
* define {@code tryAcquire} and/or {@code tryAcquireShared} to
* disable barging by internally invoking one or more of the inspection
* methods, thereby providing a <em>fair</em> FIFO acquisition order.
* In particular, most fair synchronizers can define {@code tryAcquire}
* to return {@code false} if {@link #hasQueuedPredecessors} (a method
* specifically designed to be used by fair synchronizers) returns
* {@code true}. Other variations are possible.
*
* <p>Throughput and scalability are generally highest for the
* default barging (also known as <em>greedy</em>,
* <em>renouncement</em>, and <em>convoy-avoidance</em>) strategy.
* While this is not guaranteed to be fair or starvation-free, earlier
* queued threads are allowed to recontend before later queued
* threads, and each recontention has an unbiased chance to succeed
* against incoming threads. Also, while acquires do not
* "spin" in the usual sense, they may perform multiple
* invocations of {@code tryAcquire} interspersed with other
* computations before blocking. This gives most of the benefits of
* spins when exclusive synchronization is only briefly held, without
* most of the liabilities when it isn't. If so desired, you can
* augment this by preceding calls to acquire methods with
* "fast-path" checks, possibly prechecking {@link #hasContended}
* and/or {@link #hasQueuedThreads} to only do so if the synchronizer
* is likely not to be contended.
*
* <p>This class provides an efficient and scalable basis for
* synchronization in part by specializing its range of use to
* synchronizers that can rely on {@code int} state, acquire, and
* release parameters, and an internal FIFO wait queue. When this does
* not suffice, you can build synchronizers from a lower level using
* {@link java.util.concurrent.atomic atomic} classes, your own custom
* {@link java.util.Queue} classes, and {@link LockSupport} blocking
* support.
*
* <h2>Usage Examples</h2>
*
* <p>Here is a non-reentrant mutual exclusion lock class that uses
* the value zero to represent the unlocked state, and one to
* represent the locked state. While a non-reentrant lock
* does not strictly require recording of the current owner
* thread, this class does so anyway to make usage easier to monitor.
* It also supports conditions and exposes some instrumentation methods:
*
* <pre> {@code
* class Mutex implements Lock, java.io.Serializable {
*
* // Our internal helper class
* private static class Sync extends AbstractQueuedSynchronizer {
* // Acquires the lock if state is zero
* public boolean tryAcquire(int acquires) {
* assert acquires == 1; // Otherwise unused
* if (compareAndSetState(0, 1)) {
* setExclusiveOwnerThread(Thread.currentThread());
* return true;
* }
* return false;
* }
*
* // Releases the lock by setting state to zero
* protected boolean tryRelease(int releases) {
* assert releases == 1; // Otherwise unused
* if (!isHeldExclusively())
* throw new IllegalMonitorStateException();
* setExclusiveOwnerThread(null);
* setState(0);
* return true;
* }
*
* // Reports whether in locked state
* public boolean isLocked() {
* return getState() != 0;
* }
*
* public boolean isHeldExclusively() {
* // a data race, but safe due to out-of-thin-air guarantees
* return getExclusiveOwnerThread() == Thread.currentThread();
* }
*
* // Provides a Condition
* public Condition newCondition() {
* return new ConditionObject();
* }
*
* // Deserializes properly
* private void readObject(ObjectInputStream s)
* throws IOException, ClassNotFoundException {
* s.defaultReadObject();
* setState(0); // reset to unlocked state
* }
* }
*
* // The sync object does all the hard work. We just forward to it.
* private final Sync sync = new Sync();
*
* public void lock() { sync.acquire(1); }
* public boolean tryLock() { return sync.tryAcquire(1); }
* public void unlock() { sync.release(1); }
* public Condition newCondition() { return sync.newCondition(); }
* public boolean isLocked() { return sync.isLocked(); }
* public boolean isHeldByCurrentThread() {
* return sync.isHeldExclusively();
* }
* public boolean hasQueuedThreads() {
* return sync.hasQueuedThreads();
* }
* public void lockInterruptibly() throws InterruptedException {
* sync.acquireInterruptibly(1);
* }
* public boolean tryLock(long timeout, TimeUnit unit)
* throws InterruptedException {
* return sync.tryAcquireNanos(1, unit.toNanos(timeout));
* }
* }}</pre>
*
* <p>Here is a latch class that is like a
* {@link java.util.concurrent.CountDownLatch CountDownLatch}
* except that it only requires a single {@code signal} to
* fire. Because a latch is non-exclusive, it uses the {@code shared}
* acquire and release methods.
*
* <pre> {@code
* class BooleanLatch {
*
* private static class Sync extends AbstractQueuedSynchronizer {
* boolean isSignalled() { return getState() != 0; }
*
* protected int tryAcquireShared(int ignore) {
* return isSignalled() ? 1 : -1;
* }
*
* protected boolean tryReleaseShared(int ignore) {
* setState(1);
* return true;
* }
* }
*
* private final Sync sync = new Sync();
* public boolean isSignalled() { return sync.isSignalled(); }
* public void signal() { sync.releaseShared(1); }
* public void await() throws InterruptedException {
* sync.acquireSharedInterruptibly(1);
* }
* }}</pre>
*
* @since 1.5
* @author Doug Lea
*/
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable {
private static final long serialVersionUID = 7373984972572414691L;
/**
* Creates a new {@code AbstractQueuedSynchronizer} instance
* with initial synchronization state of zero.
*/
protected AbstractQueuedSynchronizer() { }
/*
* Overview.
*
* The wait queue is a variant of a "CLH" (Craig, Landin, and
* Hagersten) lock queue. CLH locks are normally used for
* spinlocks. We instead use them for blocking synchronizers by
* including explicit ("prev" and "next") links plus a "status"
* field that allow nodes to signal successors when releasing
* locks, and handle cancellation due to interrupts and timeouts.
* The status field includes bits that track whether a thread
* needs a signal (using LockSupport.unpark). Despite these
* additions, we maintain most CLH locality properties.
*
* To enqueue into a CLH lock, you atomically splice it in as new
* tail. To dequeue, you set the head field, so the next eligible
* waiter becomes first.
*
* +------+ prev +-------+ +------+
* | head | <---- | first | <---- | tail |
* +------+ +-------+ +------+
*
* Insertion into a CLH queue requires only a single atomic
* operation on "tail", so there is a simple point of demarcation
* from unqueued to queued. The "next" link of the predecessor is
* set by the enqueuing thread after successful CAS. Even though
* non-atomic, this suffices to ensure that any blocked thread is
* signalled by a predecessor when eligible (although in the case
* of cancellation, possibly with the assistance of a signal in
* method cleanQueue). Signalling is based in part on a
* Dekker-like scheme in which the to-be waiting thread indicates
* WAITING status, then retries acquiring, and then rechecks
* status before blocking. The signaller atomically clears WAITING
* status when unparking.
*
* Dequeuing on acquire involves detaching (nulling) a node's
* "prev" node and then updating the "head". Other threads check
* if a node is or was dequeued by checking "prev" rather than
* head. We enforce the nulling then setting order by spin-waiting
* if necessary. Because of this, the lock algorithm is not itself
* strictly "lock-free" because an acquiring thread may need to
* wait for a previous acquire to make progress. When used with
* exclusive locks, such progress is required anyway. However
* Shared mode may (uncommonly) require a spin-wait before
* setting head field to ensure proper propagation. (Historical
* note: This allows some simplifications and efficiencies
* compared to previous versions of this class.)
*
* A node's predecessor can change due to cancellation while it is
* waiting, until the node is first in queue, at which point it
* cannot change. The acquire methods cope with this by rechecking
* "prev" before waiting. The prev and next fields are modified
* only via CAS by cancelled nodes in method cleanQueue. The
* unsplice strategy is reminiscent of Michael-Scott queues in
* that after a successful CAS to prev field, other threads help
* fix next fields. Because cancellation often occurs in bunches
* that complicate decisions about necessary signals, each call to
* cleanQueue traverses the queue until a clean sweep. Nodes that
* become relinked as first are unconditionally unparked
* (sometimes unnecessarily, but those cases are not worth
* avoiding).
*
* A thread may try to acquire if it is first (frontmost) in the
* queue, and sometimes before. Being first does not guarantee
* success; it only gives the right to contend. We balance
* throughput, overhead, and fairness by allowing incoming threads
* to "barge" and acquire the synchronizer while in the process of
* enqueuing, in which case an awakened first thread may need to
* rewait. To counteract possible repeated unlucky rewaits, we
* exponentially increase retries (up to 256) to acquire each time
* a thread is unparked. Except in this case, AQS locks do not
* spin; they instead interleave attempts to acquire with
* bookkeeping steps. (Users who want spinlocks can use
* tryAcquire.)
*
* To improve garbage collectibility, fields of nodes not yet on
* list are null. (It is not rare to create and then throw away a
* node without using it.) Fields of nodes coming off the list are
* nulled out as soon as possible. This accentuates the challenge
* of externally determining the first waiting thread (as in
* method getFirstQueuedThread). This sometimes requires the
* fallback of traversing backwards from the atomically updated
* "tail" when fields appear null. (This is never needed in the
* process of signalling though.)
*
* CLH queues need a dummy header node to get started. But
* we don't create them on construction, because it would be wasted
* effort if there is never contention. Instead, the node
* is constructed and head and tail pointers are set upon first
* contention.
*
* Shared mode operations differ from Exclusive in that an acquire
* signals the next waiter to try to acquire if it is also
* Shared. The tryAcquireShared API allows users to indicate the
* degree of propagation, but in most applications, it is more
* efficient to ignore this, allowing the successor to try
* acquiring in any case.
*
* Threads waiting on Conditions use nodes with an additional
* link to maintain the (FIFO) list of conditions. Conditions only
* need to link nodes in simple (non-concurrent) linked queues
* because they are only accessed when exclusively held. Upon
* await, a node is inserted into a condition queue. Upon signal,
* the node is enqueued on the main queue. A special status field
* value is used to track and atomically trigger this.
*
* Accesses to fields head, tail, and state use full Volatile
* mode, along with CAS. Node fields status, prev and next also do
* so while threads may be signallable, but sometimes use weaker
* modes otherwise. Accesses to field "waiter" (the thread to be
* signalled) are always sandwiched between other atomic accesses
* so are used in Plain mode. We use jdk.internal Unsafe versions
* of atomic access methods rather than VarHandles to avoid
* potential VM bootstrap issues.
*
* Most of the above is performed by primary internal method
* acquire, that is invoked in some way by all exported acquire
* methods. (It is usually easy for compilers to optimize
* call-site specializations when heavily used.)
*
* Most AQS methods may be called by JDK components that cannot be
* allowed to fail when encountering OutOfMemoryErrors. The main
* acquire method resorts to spin-waits with backoff if nodes
* cannot be allocated. Condition waits release and reacquire
* locks upon OOME at a slow fixed rate (OOME_COND_WAIT_DELAY)
* designed with the hope that eventually enough memory will be
* recovered; if not performance can be very slow. Effectiveness
* is also limited by the possibility of class loading triggered
* by first-time usages, that may encounter unrecoverable
* OOMEs. Also, it is possible for OutOfMemoryErrors to be thrown
* when attempting to create and throw
* IllegalMonitorStateExceptions and InterruptedExceptions.
*
* There are several arbitrary decisions about when and how to
* check interrupts in both acquire and await before and/or after
* blocking. The decisions are less arbitrary in implementation
* updates because some users appear to rely on original behaviors
* in ways that are racy and so (rarely) wrong in general but hard
* to justify changing.
*
* Thanks go to Dave Dice, Mark Moir, Victor Luchangco, Bill
* Scherer and Michael Scott, along with members of JSR-166
* expert group, for helpful ideas, discussions, and critiques
* on the design of this class.
*/
// Node status bits, also used as argument and return values
static final int WAITING = 1; // must be 1
static final int CANCELLED = 0x80000000; // must be negative
static final int COND = 2; // in a condition wait
/** CLH Nodes */
abstract static class Node {
volatile Node prev; // initially attached via casTail
volatile Node next; // visibly nonnull when signallable
Thread waiter; // visibly nonnull when enqueued
volatile int status; // written by owner, atomic bit ops by others
// methods for atomic operations
final boolean casPrev(Node c, Node v) { // for cleanQueue
return U.weakCompareAndSetReference(this, PREV, c, v);
}
final boolean casNext(Node c, Node v) { // for cleanQueue
return U.weakCompareAndSetReference(this, NEXT, c, v);
}
final int getAndUnsetStatus(int v) { // for signalling
return U.getAndBitwiseAndInt(this, STATUS, ~v);
}
final void setPrevRelaxed(Node p) { // for off-queue assignment
U.putReference(this, PREV, p);
}
final void setStatusRelaxed(int s) { // for off-queue assignment
U.putInt(this, STATUS, s);
}
final void clearStatus() { // for reducing unneeded signals
U.putIntOpaque(this, STATUS, 0);
}
private static final long STATUS
= U.objectFieldOffset(Node.class, "status");
private static final long NEXT
= U.objectFieldOffset(Node.class, "next");
private static final long PREV
= U.objectFieldOffset(Node.class, "prev");
}
// Concrete classes tagged by type
static final class ExclusiveNode extends Node { }
static final class SharedNode extends Node { }
static final class ConditionNode extends Node
implements ForkJoinPool.ManagedBlocker {
ConditionNode nextWaiter; // link to next waiting node
/**
* Allows Conditions to be used in ForkJoinPools without
* risking fixed pool exhaustion. This is usable only for
* untimed Condition waits, not timed versions.
*/
public final boolean isReleasable() {
return status <= 1 || Thread.currentThread().isInterrupted();
}
public final boolean block() {
while (!isReleasable()) LockSupport.park();
return true;
}
}
/**
* Head of the wait queue, lazily initialized.
*/
private transient volatile Node head;
/**
* Tail of the wait queue. After initialization, modified only via casTail.
*/
private transient volatile Node tail;
/**
* The synchronization state.
*/
private volatile int state;
/**
* Returns the current value of synchronization state.
* This operation has memory semantics of a {@code volatile} read.
* @return current state value
*/
protected final int getState() {
return state;
}
/**
* Sets the value of synchronization state.
* This operation has memory semantics of a {@code volatile} write.
* @param newState the new state value
*/
protected final void setState(int newState) {
state = newState;
}
/**
* Atomically sets synchronization state to the given updated
* value if the current state value equals the expected value.
* This operation has memory semantics of a {@code volatile} read
* and write.
*
* @param expect the expected value
* @param update the new value
* @return {@code true} if successful. False return indicates that the actual
* value was not equal to the expected value.
*/
protected final boolean compareAndSetState(int expect, int update) {
return U.compareAndSetInt(this, STATE, expect, update);
}
// Queuing utilities
private boolean casTail(Node c, Node v) {
return U.compareAndSetReference(this, TAIL, c, v);
}
/**
* Tries to CAS a new dummy node for head.
* Returns new tail, or null if OutOfMemory
*/
private Node tryInitializeHead() {
for (Node h = null, t;;) {
if ((t = tail) != null)
return t;
else if (head != null)
Thread.onSpinWait();
else {
if (h == null) {
try {
h = new ExclusiveNode();
} catch (OutOfMemoryError oome) {
return null;
}
}
if (U.compareAndSetReference(this, HEAD, null, h))
return tail = h;
}
}
}
/**
* Enqueues the node unless null. (Currently used only for
* ConditionNodes; other cases are interleaved with acquires.)
*/
final void enqueue(ConditionNode node) {
if (node != null) {
boolean unpark = false;
for (Node t;;) {
if ((t = tail) == null && (t = tryInitializeHead()) == null) {
unpark = true; // wake up to spin on OOME
break;
}
node.setPrevRelaxed(t); // avoid unnecessary fence
if (casTail(t, node)) {
t.next = node;
if (t.status < 0) // wake up to clean link
unpark = true;
break;
}
}
if (unpark)
LockSupport.unpark(node.waiter);
}
}
/** Returns true if node is found in traversal from tail */
final boolean isEnqueued(Node node) {
for (Node t = tail; t != null; t = t.prev)
if (t == node)
return true;
return false;
}
/**
* Wakes up the successor of given node, if one exists, and unsets its
* WAITING status to avoid park race. This may fail to wake up an
* eligible thread when one or more have been cancelled, but
* cancelAcquire ensures liveness.
*/
private static void signalNext(Node h) {
Node s;
if (h != null && (s = h.next) != null && s.status != 0) {
s.getAndUnsetStatus(WAITING);
LockSupport.unpark(s.waiter);
}
}
/** Wakes up the given node if in shared mode */
private static void signalNextIfShared(Node h) {
Node s;
if (h != null && (s = h.next) != null &&
(s instanceof SharedNode) && s.status != 0) {
s.getAndUnsetStatus(WAITING);
LockSupport.unpark(s.waiter);
}
}
/**
* Main acquire method, invoked by all exported acquire methods.
*
* @param node null unless a reacquiring Condition
* @param arg the acquire argument
* @param shared true if shared mode else exclusive
* @param interruptible if abort and return negative on interrupt
* @param timed if true use timed waits
* @param time if timed, the System.nanoTime value to timeout
* @return positive if acquired, 0 if timed out, negative if interrupted
*/
final int acquire(Node node, int arg, boolean shared,
boolean interruptible, boolean timed, long time) {
Thread current = Thread.currentThread();
byte spins = 0, postSpins = 0; // retries upon unpark of first thread
boolean interrupted = false, first = false;
Node pred = null; // predecessor of node when enqueued
/*
* Repeatedly:
* Check if node now first
* if so, ensure head stable, else ensure valid predecessor
* if node is first or not yet enqueued, try acquiring
* else if queue is not initialized, do so by attaching new header node
* resort to spinwait on OOME trying to create node
* else if node not yet created, create it
* resort to spinwait on OOME trying to create node
* else if not yet enqueued, try once to enqueue
* else if woken from park, retry (up to postSpins times)
* else if WAITING status not set, set and retry
* else park and clear WAITING status, and check cancellation
*/
for (;;) {
if (!first && (pred = (node == null) ? null : node.prev) != null &&
!(first = (head == pred))) {
if (pred.status < 0) {
cleanQueue(); // predecessor cancelled
continue;
} else if (pred.prev == null) {
Thread.onSpinWait(); // ensure serialization
continue;
}
}
if (first || pred == null) {
boolean acquired;
try {
if (shared)
acquired = (tryAcquireShared(arg) >= 0);
else
acquired = tryAcquire(arg);
} catch (Throwable ex) {
cancelAcquire(node, interrupted, false);
throw ex;
}
if (acquired) {
if (first) {
node.prev = null;
head = node;
pred.next = null;
node.waiter = null;
if (shared)
signalNextIfShared(node);
if (interrupted)
current.interrupt();
}
return 1;
}
}
Node t;
if ((t = tail) == null) { // initialize queue
if (tryInitializeHead() == null)
return acquireOnOOME(shared, arg);
} else if (node == null) { // allocate; retry before enqueue
try {
node = (shared) ? new SharedNode() : new ExclusiveNode();
} catch (OutOfMemoryError oome) {
return acquireOnOOME(shared, arg);
}
} else if (pred == null) { // try to enqueue
node.waiter = current;
node.setPrevRelaxed(t); // avoid unnecessary fence
if (!casTail(t, node))
node.setPrevRelaxed(null); // back out
else
t.next = node;
} else if (first && spins != 0) {
--spins; // reduce unfairness on rewaits
Thread.onSpinWait();
} else if (node.status == 0) {
node.status = WAITING; // enable signal and recheck
} else {
long nanos;
spins = postSpins = (byte)((postSpins << 1) | 1);
if (!timed)
LockSupport.park(this);
else if ((nanos = time - System.nanoTime()) > 0L)
LockSupport.parkNanos(this, nanos);
else
break;
node.clearStatus();
if ((interrupted |= Thread.interrupted()) && interruptible)
break;
}
}
return cancelAcquire(node, interrupted, interruptible);
}
/**
* Spin-waits with backoff; used only upon OOME failures during acquire.
*/
private int acquireOnOOME(boolean shared, int arg) {
for (long nanos = 1L;;) {
if (shared ? (tryAcquireShared(arg) >= 0) : tryAcquire(arg))
return 1;
U.park(false, nanos); // must use Unsafe park to sleep
if (nanos < 1L << 30) // max about 1 second
nanos <<= 1;
}
}
/**
* Possibly repeatedly traverses from tail, unsplicing cancelled
* nodes until none are found. Unparks nodes that may have been
* relinked to be next eligible acquirer.
*/
private void cleanQueue() {
for (;;) { // restart point
for (Node q = tail, s = null, p, n;;) { // (p, q, s) triples
if (q == null || (p = q.prev) == null)
return; // end of list
if (s == null ? tail != q : (s.prev != q || s.status < 0))
break; // inconsistent
if (q.status < 0) { // cancelled
if ((s == null ? casTail(q, p) : s.casPrev(q, p)) &&
q.prev == p) {
p.casNext(q, s); // OK if fails
if (p.prev == null)
signalNext(p);
}
break;
}
if ((n = p.next) != q) { // help finish
if (n != null && q.prev == p) {
p.casNext(n, q);
if (p.prev == null)
signalNext(p);
}
break;
}
s = q;
q = q.prev;
}
}
}
/**
* Cancels an ongoing attempt to acquire.
*
* @param node the node (may be null if cancelled before enqueuing)
* @param interrupted true if thread interrupted
* @param interruptible if should report interruption vs reset
*/
private int cancelAcquire(Node node, boolean interrupted,
boolean interruptible) {
if (node != null) {
node.waiter = null;
node.status = CANCELLED;
if (node.prev != null)
cleanQueue();
}
if (interrupted) {
if (interruptible)
return CANCELLED;
else
Thread.currentThread().interrupt();
}
return 0;
}
// Main exported methods
/**
* Attempts to acquire in exclusive mode. This method should query
* if the state of the object permits it to be acquired in the
* exclusive mode, and if so to acquire it.
*
* <p>This method is always invoked by the thread performing
* acquire. If this method reports failure, the acquire method
* may queue the thread, if it is not already queued, until it is
* signalled by a release from some other thread. This can be used
* to implement method {@link Lock#tryLock()}.
*
* <p>The default
* implementation throws {@link UnsupportedOperationException}.
*
* @param arg the acquire argument. This value is always the one
* passed to an acquire method, or is the value saved on entry
* to a condition wait. The value is otherwise uninterpreted
* and can represent anything you like.
* @return {@code true} if successful. Upon success, this object has
* been acquired.
* @throws IllegalMonitorStateException if acquiring would place this
* synchronizer in an illegal state. This exception must be
* thrown in a consistent fashion for synchronization to work
* correctly.
* @throws UnsupportedOperationException if exclusive mode is not supported
*/
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
/**
* Attempts to set the state to reflect a release in exclusive
* mode.
*
* <p>This method is always invoked by the thread performing release.
*
* <p>The default implementation throws
* {@link UnsupportedOperationException}.
*
* @param arg the release argument. This value is always the one
* passed to a release method, or the current state value upon
* entry to a condition wait. The value is otherwise
* uninterpreted and can represent anything you like.
* @return {@code true} if this object is now in a fully released
* state, so that any waiting threads may attempt to acquire;
* and {@code false} otherwise.
* @throws IllegalMonitorStateException if releasing would place this
* synchronizer in an illegal state. This exception must be
* thrown in a consistent fashion for synchronization to work
* correctly.
* @throws UnsupportedOperationException if exclusive mode is not supported
*/
protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
}
/**
* Attempts to acquire in shared mode. This method should query if
* the state of the object permits it to be acquired in the shared
* mode, and if so to acquire it.
*
* <p>This method is always invoked by the thread performing
* acquire. If this method reports failure, the acquire method
* may queue the thread, if it is not already queued, until it is
* signalled by a release from some other thread.
*
* <p>The default implementation throws {@link
* UnsupportedOperationException}.
*
* @param arg the acquire argument. This value is always the one
* passed to an acquire method, or is the value saved on entry
* to a condition wait. The value is otherwise uninterpreted
* and can represent anything you like.
* @return a negative value on failure; zero if acquisition in shared
* mode succeeded but no subsequent shared-mode acquire can
* succeed; and a positive value if acquisition in shared
* mode succeeded and subsequent shared-mode acquires might
* also succeed, in which case a subsequent waiting thread
* must check availability. (Support for three different
* return values enables this method to be used in contexts
* where acquires only sometimes act exclusively.) Upon
* success, this object has been acquired.
* @throws IllegalMonitorStateException if acquiring would place this
* synchronizer in an illegal state. This exception must be
* thrown in a consistent fashion for synchronization to work
* correctly.
* @throws UnsupportedOperationException if shared mode is not supported
*/
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
/**
* Attempts to set the state to reflect a release in shared mode.
*
* <p>This method is always invoked by the thread performing release.
*
* <p>The default implementation throws
* {@link UnsupportedOperationException}.
*
* @param arg the release argument. This value is always the one
* passed to a release method, or the current state value upon
* entry to a condition wait. The value is otherwise
* uninterpreted and can represent anything you like.
* @return {@code true} if this release of shared mode may permit a
* waiting acquire (shared or exclusive) to succeed; and
* {@code false} otherwise
* @throws IllegalMonitorStateException if releasing would place this
* synchronizer in an illegal state. This exception must be
* thrown in a consistent fashion for synchronization to work
* correctly.
* @throws UnsupportedOperationException if shared mode is not supported
*/
protected boolean tryReleaseShared(int arg) {
throw new UnsupportedOperationException();
}
/**
* Returns {@code true} if synchronization is held exclusively with
* respect to the current (calling) thread. This method is invoked
* upon each call to a {@link ConditionObject} method.
*
* <p>The default implementation throws {@link
* UnsupportedOperationException}. This method is invoked
* internally only within {@link ConditionObject} methods, so need
* not be defined if conditions are not used.
*
* @return {@code true} if synchronization is held exclusively;
* {@code false} otherwise
* @throws UnsupportedOperationException if conditions are not supported
*/
protected boolean isHeldExclusively() {
throw new UnsupportedOperationException();
}
/**
* Acquires in exclusive mode, ignoring interrupts. Implemented
* by invoking at least once {@link #tryAcquire},
* returning on success. Otherwise the thread is queued, possibly
* repeatedly blocking and unblocking, invoking {@link
* #tryAcquire} until success. This method can be used
* to implement method {@link Lock#lock}.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquire} but is otherwise uninterpreted and
* can represent anything you like.
*/
public final void acquire(int arg) {
if (!tryAcquire(arg))
acquire(null, arg, false, false, false, 0L);
}
/**
* Acquires in exclusive mode, aborting if interrupted.
* Implemented by first checking interrupt status, then invoking
* at least once {@link #tryAcquire}, returning on
* success. Otherwise the thread is queued, possibly repeatedly
* blocking and unblocking, invoking {@link #tryAcquire}
* until success or the thread is interrupted. This method can be
* used to implement method {@link Lock#lockInterruptibly}.