
SERVING MODELS

SERVE MODELS IN RED HAT OPENSHIFT AI SELF-MANAGED

Legal Notice

Abstract

Serve models in Red Hat OpenShift AI Self-Managed. Serving trained models enables you to test and implement them

into intelligent applications.

1. About model serving

2. Serving small and medium-sized models

2.1. Configuring model servers

2.1.1. Enabling the multi-model serving platform

RED HAT
OPENSHIFT AI
SELF-MANAGED
2.7

2.1.2. Adding a custom model-serving runtime for the multi-model serving platform

2.1.3. Adding a model server for the multi-model serving platform

2.1.4. Deleting a model server

2.2. Working with deployed models

2.2.1. Deploying a model by using the multi-model serving platform

2.2.2. Viewing a deployed model

2.2.3. Updating the deployment properties of a deployed model

2.2.4. Deleting a deployed model

2.3. Configuring monitoring for the multi model serving platform

2.4. Viewing metrics for the multi model serving platform

3. Serving large models

3.1. About the single model serving platform

3.2. Configuring automated installation of KServe

3.3. Manually installing KServe

3.3.1. Installing KServe dependencies

3.3.2. Installing KServe

3.4. Deploying models by using the single model serving platform

3.4.1. Enabling the single model serving platform

3.4.2. Adding a custom model-serving runtime for the single model serving platform

3.4.3. Deploying models on the single model serving platform

3.4.4. Accessing the inference endpoints for models deployed on the single model serving platform

3.5. Configuring monitoring for the single model serving platform

3.6. Viewing metrics for the single model serving platform

4. Monitoring model performance

4.1. Viewing performance metrics for all models on a model server

4.2. Viewing HTTP request metrics for a deployed model

CHAPTER 1. ABOUT MODEL SERVING

Serving trained models on Red Hat OpenShift AI means deploying the models on your OpenShift cluster to test and then

integrate them into intelligent applications. Deploying a model makes it available as a service that you can access by using

an API. This enables you to return predictions based on data inputs that you provide through API calls. This process is

known as model inferencing. When you serve a model on OpenShift AI, the inference endpoints that you can access for

the deployed model are shown in the dashboard.

OpenShift AI provides the following model serving platforms:

Single model serving platform

For deploying large models such as large language models (LLMs), OpenShift AI includes a single model serving

platform that is based on the KServe component. Because each model is deployed from its own model server, the

single model serving platform helps you to deploy, monitor, scale, and maintain large models that require increased

resources.

Multi-model serving platform

For deploying small and medium-sized models, OpenShift AI includes a multi-model serving platform that is based

on the ModelMesh component. On the multi-model serving platform, you can deploy multiple models on the same

model server. Each of the deployed models shares the server resources. This approach can be advantageous on

OpenShift clusters that have finite compute resources or pods.

CHAPTER 2. SERVING SMALL AND
MEDIUM-SIZED MODELS

https://github.com/kserve/kserve
https://github.com/kserve/modelmesh

For deploying small and medium-sized models, OpenShift AI includes a multi-model serving platform that is based on the

ModelMesh component. On the multi-model serving platform, multiple models can be deployed from the same model

server and share the server resources.

2.1. CONFIGURING MODEL SERVERS

2.1.1. Enabling the multi-model serving platform

To use the multi-model serving platform, you must first enable the platform.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the admin group (for example, rhoai-admins) in

OpenShift.

Procedure

1. In the left menu of the OpenShift AI dashboard, click Settings → Cluster settings.

2. Locate the Model serving platforms section.

3. Select the Multi-model serving platform checkbox.

4. Click Save changes.

2.1.2. Adding a custom model-serving runtime for the multi-model serving
platform

A model-serving runtime adds support for a specified set of model frameworks (that is, formats). By default, the multi-

model serving platform includes the OpenVINO Model Server runtime. However, if this runtime doesn’t meet your needs

(it doesn’t support a particular model format, for example), you can add your own, custom runtime.

As an administrator, you can use the Red Hat OpenShift AI dashboard to add and enable a custom model-serving runtime.

You can then choose the custom runtime when you create a new model server for the multi-model serving platform.

Note

OpenShift AI enables you to add your own custom runtimes, but does not support the runtimes themselves. You

are responsible for correctly configuring and maintaining custom runtimes. You are also responsible for ensuring

that you are licensed to use any custom runtimes that you add.

Prerequisites

You have logged in to OpenShift AI as an administrator.

You are familiar with how to add a model server to your project. When you have added a custom model-serving

runtime, you must configure a new model server to use the runtime.

You have reviewed the example runtimes in the kserve/modelmesh-serving repository. You can use these examples as

starting points. However, each runtime requires some further modification before you can deploy it in OpenShift AI.

The required modifications are described in the following procedure.

Note

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-small-and-medium-sized-models_model-serving#adding-a-model-server-for-the-multi-model-serving-platform_model-serving
https://github.com/kserve/modelmesh-serving/tree/main/config/runtimes

OpenShift AI includes the OpenVINO Model Server runtime by default. You do not need to add this runtime

to OpenShift AI.

Procedure

1. From the OpenShift AI dashboard, click Settings > Serving runtimes.

The Serving runtimes page opens and shows the model-serving runtimes that are already installed and enabled.

2. To add a custom runtime, choose one of the following options:

To start with an existing runtime (for example the OpenVINO Model Server runtime), click the action menu (⋮)

next to the existing runtime and then click Duplicate.

To add a new custom runtime, click Add serving runtime.

3. In the Select the model serving platforms this runtime supports list, perform one of the following actions:

To add a custom runtime for only the multi-model serving platform, select Multi-model serving platform.

To add a custom runtime for both the multi- and single model serving platforms, select Single-model and

multi-model serving platforms.

4. Optional: If you started a new runtime (rather than duplicating an existing one), add your code by choosing one of

the following options:

Upload a YAML file

Click Upload files.

In the file browser, select a YAML file on your computer. This file might be the one of the example

runtimes that you downloaded from the kserve/modelmesh-serving repository.

https://github.com/kserve/modelmesh-serving/tree/main/config/runtimes

The embedded YAML editor opens and shows the contents of the file that you uploaded.

Enter YAML code directly in the editor

Click Start from scratch.

Enter or paste YAML code directly in the embedded editor. The YAML that you paste might be copied

from one of the example runtimes in the kserve/modelmesh-serving repository.

5. Optional: If you are adding one of the example runtimes in the kserve/modelmesh-serving repository, perform the

following modifications:

a. In the YAML editor, locate the kind field for your runtime. Update the value of this field to

ServingRuntime.

b. In the kustomization.yaml file in the kserve/modelmesh-serving repository, take note of the newName and

newTag values for the runtime that you want to add. You will specify these values in a later step.

c. In the YAML editor for your custom runtime, locate the containers.image field.

d. Update the value of the containers.image field in the format newName:newTag, based on the values

that you previously noted in the kustomization.yaml file. Some examples are shown.

Nvidia Triton Inference Server

image: nvcr.io/nvidia/tritonserver:23.04-py3

Seldon Python MLServer

image: seldonio/mlserver:1.3.2

TorchServe

https://github.com/kserve/modelmesh-serving/tree/main/config/runtimes
https://github.com/kserve/modelmesh-serving/tree/main/config/runtimes
https://github.com/kserve/modelmesh-serving/blob/main/config/runtimes/kustomization.yaml
https://github.com/kserve/modelmesh-serving/tree/main/config/runtimes
https://github.com/kserve/modelmesh-serving/blob/main/config/runtimes/kustomization.yaml

image: pytorch/torchserve:0.7.1-cpu

6. In the metadata.name field, ensure that the value of the runtime you are adding is unique (that is, the value

doesn’t match a runtime that you have already added).

7. Optional: To configure a custom display name for the runtime that you are adding, add a

metadata.annotations.openshift.io/display-name field and specify a value, as shown in the following

example:

apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
 name: mlserver-0.x
 annotations:
 openshift.io/display-name: MLServer

Note

If you do not configure a custom display name for your runtime, OpenShift AI shows the value of the

metadata.name field.

8. Click Add.

The Serving runtimes page opens and shows the updated list of runtimes that are installed. Observe that the

runtime you added is automatically enabled.

9. Optional: To edit your custom runtime, click the action menu (⋮) and select Edit.

Verification

The model-serving runtime that you added is shown in an enabled state on the Serving runtimes page.

Additional resources

To learn how to configure a model server that uses a custom model-serving runtime that you have added, see Adding

a model server to your data science project.

2.1.3. Adding a model server for the multi-model serving platform

When you have enabled the multi-model serving platform, you must configure a model server to deploy models. If you

require extra computing power for use with large datasets, you can assign accelerators to your model server.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you use specialized OpenShift AI groups, you are part of the user group or admin group (for example, rhoai-users
or rhoai-admins) in OpenShift.

You have created a data science project that you can add a model server to.

You have enabled the multi-model serving platform.

If you want to use a custom model-serving runtime for your model server, you have added and enabled the runtime.

See Adding a custom model-serving runtime.

If you want to use graphics processing units (GPUs) with your model server, you have enabled GPU support in

OpenShift AI. See Enabling GPU support in OpenShift AI.

Procedure

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-small-and-medium-sized-models_model-serving#adding-a-model-server-for-the-multi-model-serving-platform_model-serving
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-small-and-medium-sized-models_model-serving#adding-a-model-server-for-the-multi-model-serving-platform_model-serving
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-small-and-medium-sized-models_model-serving#adding-a-custom-model-serving-runtime-for-the-multi-model-serving-platform_model-serving
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/managing_resources/managing-cluster-resources_cluster-mgmt#enabling-gpu-support_cluster-mgmt

1. In the left menu of the OpenShift AI dashboard, click Data Science Projects.

2. Click the name of the project that you want to configure a model server for.

A project details page opens.

3. In the Models and model servers section, perform one of the following actions:

If you see a Multi-model serving platform tile, click Add model server on the tile.

If you do not see any tiles, click the Add model server button.

The Add model server dialog opens.

4. In the Model server name field, enter a unique name for the model server.

5. From the Serving runtime list, select a model-serving runtime that is installed and enabled in your OpenShift AI

deployment.

Note

If you are using a custom model-serving runtime with your model server and want to use GPUs, you must

ensure that your custom runtime supports GPUs and is appropriately configured to use them.

6. In the Number of model replicas to deploy field, specify a value.

7. From the Model server size list, select a value.

8. Optional: If you selected Custom in the preceding step, configure the following settings in the Model server size

section to customize your model server:

a. In the CPUs requested field, specify the number of CPUs to use with your model server. Use the list beside

this field to specify the value in cores or millicores.

b. In the CPU limit field, specify the maximum number of CPUs to use with your model server. Use the list

beside this field to specify the value in cores or millicores.

c. In the Memory requested field, specify the requested memory for the model server in gibibytes (Gi).

d. In the Memory limit field, specify the maximum memory limit for the model server in gibibytes (Gi).

9. Optional: From the Accelerator list, select an accelerator.

a. If you selected an accelerator in the preceding step, specify the number of accelerators to use.

10. Optional: In the Model route section, select the Make deployed models available through an external route

checkbox to make your deployed models available to external clients.

11. Optional: In the Token authorization section, select the Require token authentication checkbox to require token

authentication for your model server. To finish configuring token authentication, perform the following actions:

a. In the Service account name field, enter a service account name for which the token will be generated. The

generated token is created and displayed in the Token secret field when the model server is configured.

b. To add an additional service account, click Add a service account and enter another service account name.

12. Click Add.

The model server that you configured appears in the Models and model servers section of the project details

page.

13. Optional: To update the model server, click the action menu (⋮) beside the model server and select Edit model

server.

2.1.4. Deleting a model server

When you no longer need a model server to host models, you can remove it from your data science project.

Note

When you remove a model server, you also remove the models that are hosted on that model server. As a result,

the models are no longer available to applications.

Prerequisites

You have created a data science project and an associated model server.

You have notified the users of the applications that access the models that the models will no longer be available.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group (for example, rhoai-
users or rhoai-admins) in OpenShift.

Procedure

1. From the OpenShift AI dashboard, click Data Science Projects.

The Data science projects page opens.

2. Click the name of the project from which you want to delete the model server.

A project details page opens.

3. Click the action menu (⋮) beside the project whose model server you want to delete in the Models and model

servers section and then click Delete model server.

The Delete model server dialog opens.

4. Enter the name of the model server in the text field to confirm that you intend to delete it.

5. Click Delete model server.

Verification

The model server that you deleted is no longer displayed in the Models and model servers section on the project

details page.

2.2. WORKING WITH DEPLOYED MODELS

2.2.1. Deploying a model by using the multi-model serving platform

You can deploy trained models on OpenShift AI to enable you to test and implement them into intelligent applications.

Deploying a model makes it available as a service that you can access by using an API. This enables you to return

predictions based on data inputs.

When you have enabled the multi-model serving platform, you can deploy models on the platform.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group (for example, rhoai-
users) in OpenShift.

You have enabled the multi-model serving platform.

You have created a data science project and added a model server.

You have access to S3-compatible object storage.

For the model that you want to deploy, you know the associated folder path in your S3-compatible object storage

bucket.

Procedure

1. In the left menu of the OpenShift AI dashboard, click Data Science Projects.

2. Click the name of the project that you want to deploy a model in.

A project details page opens.

3. In the Models and model servers section, click Deploy model.

4. Configure properties for deploying your model as follows:

a. In the Model name field, enter a unique name for the model that you are deploying.

b. From the Model framework list, select a framework for your model.

Note

The Model framework list shows only the frameworks that are supported by the model-serving

runtime that you specified when you configured your model server.

c. To specify the location of the model you want to deploy from S3-compatible object storage, perform one of

the following sets of actions:

To use an existing data connection

Select Existing data connection.

From the Name list, select a data connection that you previously defined.

In the Path field, enter the folder path that contains the model in your specified data source.

To use a new data connection

To define a new data connection that your model can access, select New data connection.

In the Name field, enter a unique name for the data connection.

In the Access key field, enter the access key ID for the S3-compatible object storage provider.

In the Secret key field, enter the secret access key for the S3-compatible object storage account

that you specified.

In the Endpoint field, enter the endpoint of your S3-compatible object storage bucket.

In the Region field, enter the default region of your S3-compatible object storage account.

In the Bucket field, enter the name of your S3-compatible object storage bucket.

In the Path field, enter the folder path in your S3-compatible object storage that contains your

data file.

d. Click Deploy.

Verification

Confirm that the deployed model is shown in the Models and model servers section of your project, and on the

Model Serving page of the dashboard with a checkmark in the Status column.

2.2.2. Viewing a deployed model

To analyze the results of your work, you can view a list of deployed models on Red Hat OpenShift AI. You can also view the

current statuses of deployed models and their endpoints.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group (for example, rhoai-

users or rhoai-admins) in OpenShift.

Procedure

1. From the OpenShift AI dashboard, click Model Serving.

The Deployed models page opens.

For each model, the page shows details such as the model name, the project in which the model is deployed, the

serving runtime that the model uses, and the deployment status.

2. Optional: For a given model, click the link in the Inference endpoint column to see the inference endpoints for the

deployed model.

Verification

A list of previously deployed data science models is displayed on the Deployed models page.

2.2.3. Updating the deployment properties of a deployed model

You can update the deployment properties of a model that has been deployed previously. This allows you to change the

model’s data connection and name.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group (for example, rhoai-
users or rhoai-admins) in OpenShift.

You have deployed a model on OpenShift AI.

Procedure

1. From the OpenShift AI dashboard, click Model serving.

The Model Serving page opens.

2. Click the action menu (⋮) beside the model whose deployment properties you want to update and click Edit.

The Deploy model dialog opens.

3. Update the deployment properties of the model as follows:

a. In the Model Name field, enter a new, unique name for the model.

b. From the Model framework list, select a framework for your model.

Note

The Model framework list shows only the frameworks that are supported by the model-serving

runtime that you specified when you configured your model server.

c. To update how you have specified the location of your model, perform one of the following sets of actions:

If you previously specified an existing data connection

In the Path field, update the folder path that contains the model in your specified data source.

If you previously specified a new data connection

In the Name field, update a unique name for the data connection.

In the Access key field, update the access key ID for the S3-compatible object storage provider.

In the Secret key field, update the secret access key for the S3-compatible object storage account

that you specified.

In the Endpoint field, update the endpoint of your S3-compatible object storage bucket.

In the Region field, update the default region of your S3-compatible object storage account.

In the Bucket field, update the name of your S3-compatible object storage bucket.

In the Path field, update the folder path in your S3-compatible object storage that contains your

data file.

d. Click Deploy.

Verification

The model whose deployment properties you updated is displayed on the Model Serving page.

2.2.4. Deleting a deployed model

You can delete models you have previously deployed. This enables you to remove deployed models that are no longer

required.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group (for example, rhoai-

users or rhoai-admins) in OpenShift.

You have deployed a model.

Procedure

1. From the OpenShift AI dashboard, click Model serving.

The Deployed models page opens.

2. Click the action menu (⋮) beside the deployed model that you want to delete and click Delete.

The Delete deployed model dialog opens.

3. Enter the name of the deployed model in the text field to confirm that you intend to delete it.

4. Click Delete deployed model.

Verification

The model that you deleted is no longer displayed on the Deployed models page.

2.3. CONFIGURING MONITORING FOR THE MULTI MODEL
SERVING PLATFORM

The multi model serving platform includes metrics for the ModelMesh component. When you have configured monitoring,

you can grant Prometheus access to scrape the available metrics.

Prerequisites

You have cluster administrator privileges for your OpenShift Container Platform cluster.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing the OpenShift CLI.

You are familiar with creating a config map for monitoring a user-defined workflow. You will perform similar steps in this

procedure.

You are familiar with enabling monitoring for user-defined projects in OpenShift. You will perform similar steps in this

procedure.

You have assigned the monitoring-rules-view role to users that will monitor metrics.

Procedure

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a cluster administrator, log in to

the OpenShift CLI as shown in the following example:

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>

2. Define a ConfigMap object in a YAML file called uwm-cm-conf.yaml with the following contents:

https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://docs.openshift.com/container-platform/4.14/monitoring/configuring-the-monitoring-stack.html#creating-user-defined-workload-monitoring-configmap_configuring-the-monitoring-stack
https://docs.openshift.com/container-platform/4.14/monitoring/enabling-monitoring-for-user-defined-projects.html
https://docs.openshift.com/container-platform/4.14/monitoring/enabling-monitoring-for-user-defined-projects.html#granting-users-permission-to-monitor-user-defined-projects_enabling-monitoring-for-user-defined-projects

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 logLevel: debug
 retention: 15d

The user-workload-monitoring-config object configures the components that monitor user-defined

projects. Observe that the retention time is set to the recommended value of 15 days.

3. Apply the configuration to create the user-workload-monitoring-config object.

$ oc apply -f uwm-cm-conf.yaml

4. Define another ConfigMap object in a YAML file called uwm-cm-enable.yaml with the following contents:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true

The cluster-monitoring-config object enables monitoring for user-defined projects.

5. Apply the configuration to create the cluster-monitoring-config object.

$ oc apply -f uwm-cm-enable.yaml

2.4. VIEWING METRICS FOR THE MULTI MODEL SERVING
PLATFORM

When a cluster administrator has configured monitoring for the multi model serving platform, non-admin users can use

the OpenShift web console to view metrics.

Prerequisites

A cluster administrator has configured monitoring for the multi model serving platform.

You have been assigned the monitoring-rules-view role.

You are familiar with how to monitor project metrics in the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Switch to the Developer perspective.

3. In the left menu, click Observe.

4. As described in monitoring project metrics, use the web console to run queries for modelmesh_* metrics.

https://docs.openshift.com/container-platform/4.14/monitoring/enabling-monitoring-for-user-defined-projects.html#granting-users-permission-to-monitor-user-defined-projects_enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/building_applications/odc-monitoring-project-and-application-metrics-using-developer-perspective#odc-monitoring-your-project-metrics_monitoring-project-and-application-metrics-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/building_applications/odc-monitoring-project-and-application-metrics-using-developer-perspective#odc-monitoring-your-project-metrics_monitoring-project-and-application-metrics-using-developer-perspective

CHAPTER 3. SERVING LARGE
MODELS

For deploying large models such as large language models (LLMs), Red Hat OpenShift AI includes a single model serving

platform that is based on the KServe component. Because each model is deployed from its own model server, the single

model serving platform helps you to deploy, monitor, scale, and maintain large models that require increased resources.

3.1. ABOUT THE SINGLE MODEL SERVING PLATFORM

The single model serving platform consists of the following components:

KServe: A Kubernetes custom resource definition (CRD) that orchestrates model serving for all types of models. It

includes model-serving runtimes that implement the loading of given types of model servers. KServe handles the

lifecycle of the deployment object, storage access, and networking setup.

Red Hat OpenShift Serverless: A cloud-native development model that allows for serverless deployments of models.

OpenShift Serverless is based on the open source Knative project.

Red Hat OpenShift Service Mesh: A service mesh networking layer that manages traffic flows and enforces access

policies. OpenShift Service Mesh is based on the open source Istio project.

To install the single model serving platform, you have the following options:

Automated installation

https://github.com/opendatahub-io/kserve
https://docs.openshift.com/serverless/1.29/about/about-serverless.html
https://knative.dev/docs/
https://docs.openshift.com/container-platform/4.14/service_mesh/v2x/ossm-architecture.html
https://istio.io/

If you have not already created a ServiceMeshControlPlane or KNativeServing resource on your OpenShift

cluster, you can configure the Red Hat OpenShift AI Operator to install KServe and its dependencies.

Manual installation

If you have already created a ServiceMeshControlPlane or KNativeServing resource on your OpenShift

cluster, you cannot configure the Red Hat OpenShift AI Operator to install KServe and its dependencies. In this

situation, you must install KServe manually.

When you have installed KServe, you can use the OpenShift AI dashboard to deploy models using pre-installed or custom

model-serving runtimes.

OpenShift AI includes the following pre-installed runtimes for KServe:

A standalone TGIS runtime

A composite Caikit-TGIS runtime

OpenVINO Model Server

Note

Text Generation Inference Server (TGIS) is based on an early fork of Hugging Face TGI. Red Hat will

continue to develop the standalone TGIS runtime to support TGI models. If a model does not work in the

current version of OpenShift AI, support might be added in a future version. In the meantime, you can also

add your own, custom runtime to support a TGI model. For more information, see Adding a custom model-

serving runtime for the single model serving platform.

https://github.com/IBM/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-large-models_serving-large-models#adding-a-custom-model-serving-runtime-for-the-single-model-serving-platform_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-large-models_serving-large-models#adding-a-custom-model-serving-runtime-for-the-single-model-serving-platform_serving-large-models

The composite Caikit-TGIS runtime is based on Caikit and Text Generation Inference Server (TGIS). To use

this runtime, you must convert your models to Caikit format. For an example, see Converting Hugging Face

Hub models to Caikit format in the caikit-tgis-serving repository.

You can also configure monitoring for the single model serving platform and use Prometheus to scrape the available

metrics.

3.2. CONFIGURING AUTOMATED INSTALLATION OF KSERVE

If you have not already created a ServiceMeshControlPlane or KNativeServing resource on your OpenShift

cluster, you can configure the Red Hat OpenShift AI Operator to install KServe and its dependencies.

Important

If you have created a ServiceMeshControlPlane or KNativeServing resource on your cluster, the

Red Hat OpenShift AI Operator cannot install KServe and its dependencies and the installation does not

proceed. In this situation, you must follow the manual installation instructions to install KServe.

Prerequisites

You have cluster administrator privileges for your OpenShift Container Platform cluster.

Your cluster has a node with 4 CPUs and 16 GB memory.

You have downloaded and installed the OpenShift command-line interface (CLI). For more information, see Installing

the OpenShift CLI.

https://github.com/opendatahub-io/caikit
https://github.com/IBM/text-generation-inference
https://github.com/opendatahub-io/caikit-tgis-serving/blob/main/demo/kserve/built-tip.md#bootstrap-process
https://github.com/opendatahub-io/caikit-tgis-serving/blob/main/demo/kserve/built-tip.md#bootstrap-process
https://github.com/opendatahub-io/caikit-tgis-serving/tree/main
https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli

You have installed the Red Hat OpenShift Service Mesh Operator and dependent Operators.

Note

To enable automated installation of KServe, install only the required Operators for Red Hat OpenShift

Service Mesh. Do not perform any additional configuration or create a ServiceMeshControlPlane
resource.

You have installed the Red Hat OpenShift Serverless Operator.

Note

To enable automated installation of KServe, install only the Red Hat OpenShift Serverless Operator. Do not

perform any additional configuration or create a KNativeServing resource.

You have installed the Red Hat OpenShift AI Operator and created a DataScienceCluster object.

Procedure

1. Log in to the OpenShift web console as a cluster administrator.

2. In the web console, click Operators → Installed Operators and then click the Red Hat OpenShift AI Operator.

3. Install OpenShift Service Mesh as follows:

a. Click the DSC Initialization tab.

b. Click the default-dsci object.

https://docs.openshift.com/container-platform/4.14/service_mesh/v2x/installing-ossm.html#ossm-install-ossm-operator_installing-ossm
https://docs.openshift.com/serverless/1.30/install/install-serverless-operator.html
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/installing_and_uninstalling_openshift_ai_self-managed/installing-and-deploying-openshift-ai_install#installing-the-openshift-data-science-operator_operator-install
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/installing_and_uninstalling_openshift_ai_self-managed/installing-and-deploying-openshift-ai_install#installing-and-managing-openshift-ai-components_component-install

c. Click the YAML tab.

d. In the spec section, validate that the value of the managementState field for the serviceMesh
component is set to Managed, as shown:

spec:
 applicationsNamespace: redhat-ods-applications
 monitoring:
 managementState: Managed
 namespace: redhat-ods-monitoring
 serviceMesh:
 controlPlane:
 metricsCollection: Istio
 name: data-science-smcp
 namespace: istio-system
 managementState: Managed

Note

Do not change the istio-system namespace that is specified for the serviceMesh component

by default. Other namespace values are not supported.

e. Click Save.

Based on the configuration you added to the DSCInitialization object, the Red Hat OpenShift AI

Operator installs OpenShift Service Mesh.

4. Install both KServe and OpenShift Serverless as follows:

a. In the web console, click Operators → Installed Operators and then click the Red Hat OpenShift AI

Operator.

b. Click the Data Science Cluster tab.

c. Click the default-dsc DSC object.

d. Click the YAML tab.

e. In the spec.components section, configure the kserve component as shown.

spec:
 components:
 kserve:
 managementState: Managed
 serving:
 ingressGateway:
 certificate:
 secretName: knative-serving-cert
 type: SelfSigned
 managementState: Managed
 name: knative-serving

f. Click Save.

The preceding configuration creates an ingress gateway for OpenShift Serverless to receive traffic from

OpenShift Service Mesh. In this configuration, observe the following details:

The configuration shown generates a self-signed certificate to secure incoming traffic to your OpenShift

cluster and stores the certificate in the knative-serving-cert secret that is specified in the

secretName field. To provide your own certificate, update the value of the secretName field to specify

your secret name and change the value of the type field to Provided.

Note

If you provide your own certificate, the certificate must specify the domain name used by the

ingress controller of your OpenShift cluster. You can check this value by running the following

command:

$ oc get ingresses.config.openshift.io cluster -o
jsonpath='{.spec.domain}'

You must set the value of the managementState field to Managed for both the kserve and serving
components. Setting kserve.managementState to Managed triggers automated installation of

KServe. Setting serving.managementState to Managed triggers automated installation of OpenShift

Serverless. However, installation of OpenShift Serverless will not be triggered if

kserve.managementState is not also set to Managed.

Verification

Verify installation of OpenShift Service Mesh as follows:

In the web console, click Workloads → Pods.

From the project list, select istio-system. This is the project in which OpenShift Service Mesh is installed.

Confirm that there are running pods for the service mesh control plane, ingress gateway, and egress gateway.

These pods have the naming patterns shown in the following example:

NAME READY
STATUS RESTARTS AGE
istio-egressgateway-7c46668687-fzsqj 1/1
Running 0 22h
istio-ingressgateway-77f94d8f85-fhsp9 1/1
Running 0 22h
istiod-data-science-smcp-cc8cfd9b8-2rkg4 1/1
Running 0 22h

Verify installation of OpenShift Serverless as follows:

In the web console, click Workloads → Pods.

From the project list, select knative-serving. This is the project in which OpenShift Serverless is installed.

Confirm that there are numerous running pods in the knative-serving project, including activator, autoscaler,

controller, and domain mapping pods, as well as pods for the Knative Istio controller (which controls the integration

of OpenShift Serverless and OpenShift Service Mesh). An example is shown.

NAME READY STATUS
RESTARTS AGE
activator-7586f6f744-nvdlb 2/2 Running 0
22h
activator-7586f6f744-sd77w 2/2 Running 0
22h
autoscaler-764fdf5d45-p2v98 2/2 Running 0
22h
autoscaler-764fdf5d45-x7dc6 2/2 Running 0
22h

autoscaler-hpa-7c7c4cd96d-2lkzg 1/1 Running 0
22h
autoscaler-hpa-7c7c4cd96d-gks9j 1/1 Running 0
22h
controller-5fdfc9567c-6cj9d 1/1 Running 0
22h
controller-5fdfc9567c-bf5x7 1/1 Running 0
22h
domain-mapping-56ccd85968-2hjvp 1/1 Running 0
22h
domain-mapping-56ccd85968-lg6mw 1/1 Running 0
22h
domainmapping-webhook-769b88695c-gp2hk 1/1 Running 0
22h
domainmapping-webhook-769b88695c-npn8g 1/1 Running 0
22h
net-istio-controller-7dfc6f668c-jb4xk 1/1 Running 0
22h
net-istio-controller-7dfc6f668c-jxs5p 1/1 Running 0
22h
net-istio-webhook-66d8f75d6f-bgd5r 1/1 Running 0
22h
net-istio-webhook-66d8f75d6f-hld75 1/1 Running 0
22h
webhook-7d49878bc4-8xjbr 1/1 Running 0
22h
webhook-7d49878bc4-s4xx4 1/1 Running 0
22h

Verify installation of KServe as follows:

In the web console, click Workloads → Pods.

From the project list, select redhat-ods-applications.This is the project in which OpenShift AI components are

installed, including KServe.

Confirm that the project includes a running pod for the KServe controller manager, similar to the following

example:

NAME READY STATUS
RESTARTS AGE
kserve-controller-manager-7fbb7bccd4-t4c5g 1/1 Running 0
22h
odh-model-controller-6c4759cc9b-cftmk 1/1 Running 0
129m
odh-model-controller-6c4759cc9b-ngj8b 1/1 Running 0
129m
odh-model-controller-6c4759cc9b-vnhq5 1/1 Running 0
129m

3.3. MANUALLY INSTALLING KSERVE

If you have already installed the Red Hat OpenShift Service Mesh Operator and created a ServiceMeshControlPlane

resource or if you have installed the Red Hat OpenShift Serverless Operator and created a KNativeServing resource,

the Red Hat OpenShift AI Operator cannot install KServe and its dependencies. In this situation, you must install KServe

manually.

Important

The procedures in this section show how to perform a new installation of KServe and its dependencies and are

intended as a complete installation and configuration reference. If you have already installed and configured

OpenShift Service Mesh or OpenShift Serverless, you might not need to follow all steps. If you are unsure about

what updates to apply to your existing configuration to use KServe, contact Red Hat Support.

3.3.1. Installing KServe dependencies

Before you install KServe, you must install and configure some dependencies. Specifically, you must create Red Hat

OpenShift Service Mesh and Knative Serving instances and then configure secure gateways for Knative Serving.

3.3.1.1. Creating an OpenShift Service Mesh instance

The following procedure shows how to create a Red Hat OpenShift Service Mesh instance.

Prerequisites

You have cluster administrator privileges for your OpenShift Container Platform cluster.

Your cluster has a node with 4 CPUs and 16 GB memory.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing the OpenShift CLI.

You have installed the Red Hat OpenShift Service Mesh Operator and dependent Operators.

Procedure

https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://docs.openshift.com/container-platform/4.14/service_mesh/v2x/installing-ossm.html#ossm-install-ossm-operator_installing-ossm

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a cluster administrator, log in to

the OpenShift CLI as shown in the following example:

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>

2. Create the required namespace for Red Hat OpenShift Service Mesh.

$ oc create ns istio-system

You see the following output:

namespace/istio-system created

3. Define a ServiceMeshControlPlane object in a YAML file named smcp.yaml with the following contents:

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: minimal
 namespace: istio-system
spec:
 tracing:
 type: None
 addons:
 grafana:
 enabled: false
 kiali:
 name: kiali

 enabled: false
 prometheus:
 enabled: false
 jaeger:
 name: jaeger
 security:
 dataPlane:
 mtls: true
 identity:
 type: ThirdParty
 techPreview:
 meshConfig:
 defaultConfig:
 terminationDrainDuration: 35s
 gateways:
 ingress:
 service:
 metadata:
 labels:
 knative: ingressgateway
 proxy:
 networking:
 trafficControl:
 inbound:
 excludedPorts:
 - 8444
 - 8022

For more information about the values in the YAML file, see the Service Mesh control plane configuration reference.

4. Create the service mesh control plane.

$ oc apply -f smcp.yaml

Verification

Verify creation of the service mesh instance as follows:

In the OpenShift CLI, enter the following command:

$ oc get pods -n istio-system

The preceding command lists all running pods in the istio-system project. This is the project in which

OpenShift Service Mesh is installed.

Confirm that there are running pods for the service mesh control plane, ingress gateway, and egress gateway.

These pods have the following naming patterns:

NAME READY STATUS
RESTARTS AGE
istio-egressgateway-7c46668687-fzsqj 1/1 Running 0
22h
istio-ingressgateway-77f94d8f85-fhsp9 1/1 Running 0
22h
istiod-data-science-smcp-cc8cfd9b8-2rkg4 1/1 Running 0
22h

https://docs.openshift.com/container-platform/4.14/service_mesh/v2x/ossm-reference-smcp.html

3.3.1.2. Creating a Knative Serving instance

The following procedure shows how to install Knative Serving and then create an instance.

Prerequisites

You have cluster administrator privileges for your OpenShift Container Platform cluster.

Your cluster has a node with 4 CPUs and 16 GB memory.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing the OpenShift CLI.

You have created a Red Hat OpenShift Service Mesh instance.

You have installed the Red Hat OpenShift Serverless Operator.

Procedure

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a cluster administrator, log in to

the OpenShift CLI as shown in the following example:

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>

2. Check whether the required project (that is, namespace) for Knative Serving already exists.

$ oc get ns knative-serving

If the project exists, you see output similar to the following example:

NAME STATUS AGE
knative-serving Active 4d20h

https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-large-models_serving-large-models#creating-a-service-mesh-instance_serving-large-models
https://docs.openshift.com/serverless/1.30/install/install-serverless-operator.html#serverless-install-cli_install-serverless-operator

3. If the knative-serving project doesn’t already exist, create it.

$ oc create ns knative-serving

You see the following output:

namespace/knative-serving created

4. Define a ServiceMeshMember object in a YAML file called default-smm.yaml with the following contents:

apiVersion: maistra.io/v1
kind: ServiceMeshMember
metadata:
 name: default
 namespace: knative-serving
spec:
 controlPlaneRef:
 namespace: istio-system
 name: minimal

5. Create the ServiceMeshMember object in the istio-system namespace.

$ oc apply -f default-smm.yaml

You see the following output:

servicemeshmember.maistra.io/default created

6. Define a KnativeServing object in a YAML file called knativeserving-istio.yaml with the following

contents:

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
 annotations:
 serverless.openshift.io/default-enable-http2: "true"
spec:
 workloads:
 - name: net-istio-controller
 env:
 - container: controller
 envVars:
 - name: ENABLE_SECRET_INFORMER_FILTERING_BY_CERT_UID
 value: 'true'
 - annotations:
 sidecar.istio.io/inject: "true" 1
 sidecar.istio.io/rewriteAppHTTPProbers: "true 2
 name: activator
 - annotations:
 sidecar.istio.io/inject: "true"
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 name: autoscaler
 ingress:
 istio:

 enabled: true
 config:
 features:
 kubernetes.podspec-affinity: enabled
 kubernetes.podspec-nodeselector: enabled
 kubernetes.podspec-tolerations: enabled

The preceding file defines a custom resource (CR) for a KnativeServing object. The CR also adds the following

actions to each of the activator and autoscaler pods:

Injects an Istio sidecar to the pod. This makes the pod part of the service mesh.

Enables the Istio sidecar to rewrite the HTTP liveness and readiness probes for the pod.

Note

If you configure a custom domain for a Knative service, you can use a TLS certificate to secure the

mapped service. To do this, you must create a TLS secret, and then update the DomainMapping CR to

use the TLS secret that you have created. For more information, see Securing a mapped service using a

TLS certificate in the Red Hat OpenShift Serverless documentation.

7. Create the KnativeServing object in the specified knative-serving namespace.

$ oc apply -f knativeserving-istio.yaml

1

2

https://docs.openshift.com/serverless/1.31/knative-serving/config-custom-domains/domain-mapping-custom-tls-cert.html
https://docs.openshift.com/serverless/1.31/knative-serving/config-custom-domains/domain-mapping-custom-tls-cert.html

You see the following output:

knativeserving.operator.knative.dev/knative-serving created

Verification

Review the default ServiceMeshMemberRoll object in the istio-system namespace.

$ oc describe smmr default -n istio-system

In the description of the ServiceMeshMemberRoll object, locate the Status.Members field and confirm that it

includes the knative-serving namespace.

Verify creation of the Knative Serving instance as follows:

In the OpenShift CLI, enter the following command:

$ oc get pods -n knative-serving

The preceding command lists all running pods in the knative-serving project. This is the project in which you

created the Knative Serving instance.

Confirm that there are numerous running pods in the knative-serving project, including activator, autoscaler,

controller, and domain mapping pods, as well as pods for the Knative Istio controller, which controls the integration

of OpenShift Serverless and OpenShift Service Mesh. An example is shown.

NAME READY STATUS
RESTARTS AGE
activator-7586f6f744-nvdlb 2/2 Running
0 22h

activator-7586f6f744-sd77w 2/2 Running
0 22h
autoscaler-764fdf5d45-p2v98 2/2 Running
0 22h
autoscaler-764fdf5d45-x7dc6 2/2 Running
0 22h
autoscaler-hpa-7c7c4cd96d-2lkzg 1/1 Running
0 22h
autoscaler-hpa-7c7c4cd96d-gks9j 1/1 Running
0 22h
controller-5fdfc9567c-6cj9d 1/1 Running
0 22h
controller-5fdfc9567c-bf5x7 1/1 Running
0 22h
domain-mapping-56ccd85968-2hjvp 1/1 Running
0 22h
domain-mapping-56ccd85968-lg6mw 1/1 Running
0 22h
domainmapping-webhook-769b88695c-gp2hk 1/1 Running
0 22h
domainmapping-webhook-769b88695c-npn8g 1/1 Running
0 22h
net-istio-controller-7dfc6f668c-jb4xk 1/1 Running
0 22h
net-istio-controller-7dfc6f668c-jxs5p 1/1 Running
0 22h
net-istio-webhook-66d8f75d6f-bgd5r 1/1 Running
0 22h

net-istio-webhook-66d8f75d6f-hld75 1/1 Running
0 22h
webhook-7d49878bc4-8xjbr 1/1 Running
0 22h
webhook-7d49878bc4-s4xx4 1/1 Running
0 22h

3.3.1.3. Creating secure gateways for Knative Serving

To secure traffic between your Knative Serving instance and the service mesh, you must create secure gateways for your

Knative Serving instance.

The following procedure shows how to use OpenSSL to generate a wildcard certificate and key and then use them to

create local and ingress gateways for Knative Serving.

Important

If you have your own wildcard certificate and key to specify when configuring the gateways, you can skip to step

11 of this procedure.

Prerequisites

You have cluster administrator privileges for your OpenShift Container Platform cluster.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing the OpenShift CLI.

You have created a Red Hat OpenShift Service Mesh instance.

https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-large-models_serving-large-models#creating-a-service-mesh-instance_serving-large-models

You have created a Knative Serving instance.

If you intend to generate a wildcard certificate and key, you have downloaded and installed OpenSSL.

Procedure

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a cluster administrator, log in to

the OpenShift CLI as shown in the following example:

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>

Important

If you have your own wildcard certificate and key to specify when configuring the gateways, skip to step 11

of this procedure.

2. Set environment variables to define base directories for generation of a wildcard certificate and key for the

gateways.

$ export BASE_DIR=/tmp/kserve
$ export BASE_CERT_DIR=${BASE_DIR}/certs

3. Set an environment variable to define the common name used by the ingress controller of your OpenShift cluster.

$ export COMMON_NAME=$(oc get ingresses.config.openshift.io cluster -o
jsonpath='{.spec.domain}' | awk -F'.' '{print $(NF-1)"."$NF}')

4. Set an environment variable to define the domain name used by the ingress controller of your OpenShift cluster.

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-large-models_serving-large-models#creating-a-knative-serving-instance_serving-large-models
https://www.openssl.org/source/

$ export DOMAIN_NAME=$(oc get ingresses.config.openshift.io cluster -o
jsonpath='{.spec.domain}')

5. Create the required base directories for the certificate generation, based on the environment variables that you

previously set.

$ mkdir ${BASE_DIR}
$ mkdir ${BASE_CERT_DIR}

6. Create the OpenSSL configuration for generation of a wildcard certificate.

$ cat <<EOF> ${BASE_DIR}/openssl-san.config
[req]
distinguished_name = req
[san]
subjectAltName = DNS:*.${DOMAIN_NAME}
EOF

7. Generate a root certificate.

$ openssl req -x509 -sha256 -nodes -days 3650 -newkey rsa:2048 \
-subj "/O=Example Inc./CN=${COMMON_NAME}" \
-keyout $BASE_DIR/root.key \
-out $BASE_DIR/root.crt

8. Generate a wildcard certificate signed by the root certificate.

$ openssl req -x509 -newkey rsa:2048 \
-sha256 -days 3560 -nodes \
-subj "/CN=${COMMON_NAME}/O=Example Inc." \
-extensions san -config ${BASE_DIR}/openssl-san.config \
-CA $BASE_DIR/root.crt \
-CAkey $BASE_DIR/root.key \
-keyout $BASE_DIR/wildcard.key \
-out $BASE_DIR/wildcard.crt

$ openssl x509 -in ${BASE_DIR}/wildcard.crt -text

9. Verify the wildcard certificate.

$ openssl verify -CAfile ${BASE_DIR}/root.crt ${BASE_DIR}/wildcard.crt

10. Export the wildcard key and certificate that were created by the script to new environment variables.

$ export TARGET_CUSTOM_CERT=${BASE_CERT_DIR}/wildcard.crt
$ export TARGET_CUSTOM_KEY=${BASE_CERT_DIR}/wildcard.key

11. Optional: To export your own wildcard key and certificate to new environment variables, enter the following

commands:

$ export TARGET_CUSTOM_CERT=<path_to_certificate>
$ export TARGET_CUSTOM_KEY=<path_to_key>

Note

In the certificate that you provide, you must specify the domain name used by the ingress controller of

your OpenShift cluster. You can check this value by running the following command:

$ oc get ingresses.config.openshift.io cluster -o jsonpath='{.spec.domain}'

12. Create a TLS secret in the istio-system namespace using the environment variables that you set for the

wildcard certificate and key.

$ oc create secret tls wildcard-certs --cert=${TARGET_CUSTOM_CERT} --
key=${TARGET_CUSTOM_KEY} -n istio-system

13. Create a gateways.yaml YAML file with the following contents:

apiVersion: v1
kind: Service 1
metadata:
 labels:
 experimental.istio.io/disable-gateway-port-translation: "true"
 name: knative-local-gateway
 namespace: istio-system
spec:
 ports:
 - name: http2
 port: 80
 protocol: TCP
 targetPort: 8081
 selector:
 knative: ingressgateway
 type: ClusterIP

apiVersion: networking.istio.io/v1beta1
kind: Gateway
metadata:
 name: knative-ingress-gateway 2
 namespace: knative-serving
spec:
 selector:
 knative: ingressgateway
 servers:
 - hosts:
 - '*'
 port:
 name: https
 number: 443
 protocol: HTTPS
 tls:
 credentialName: wildcard-certs
 mode: SIMPLE

apiVersion: networking.istio.io/v1beta1
kind: Gateway
metadata:
 name: knative-local-gateway 3
 namespace: knative-serving
spec:
 selector:
 knative: ingressgateway

 servers:
 - port:
 number: 8081
 name: https
 protocol: HTTPS
 tls:
 mode: ISTIO_MUTUAL
 hosts:
 - "*"

Defines a service in the istio-system namespace for the Knative local gateway.

Defines an ingress gateway in the knative-serving namespace. The gateway uses the TLS secret you

created earlier in this procedure. The ingress gateway handles external traffic to Knative.

Defines a local gateway for Knative in the knative-serving namespace.

14. Apply the gateways.yaml file to create the defined resources.

$ oc apply -f gateways.yaml

You see the following output:

1

2

3

service/knative-local-gateway created
gateway.networking.istio.io/knative-ingress-gateway created
gateway.networking.istio.io/knative-local-gateway created

Verification

Review the gateways that you created.

$ oc get gateway --all-namespaces

Confirm that you see the local and ingress gateways that you created in the knative-serving namespace, as shown

in the following example:

NAMESPACE NAME AGE
knative-serving knative-ingress-gateway 69s
knative-serving knative-local-gateway 2m

3.3.2. Installing KServe

To complete manual installation of KServe, you must install the Red Hat OpenShift AI Operator. Then, you can configure

the Operator to install KServe.

Prerequisites

You have cluster administrator privileges for your OpenShift Container Platform cluster.

Your cluster has a node with 4 CPUs and 16 GB memory.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing the OpenShift CLI.

https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli

You have created a Red Hat OpenShift Service Mesh instance.

You have created a Knative Serving instance.

You have created secure gateways for Knative Serving.

You have installed the Red Hat OpenShift AI Operator and created a DataScienceCluster object.

Procedure

1. Log in to the OpenShift web console as a cluster administrator.

2. In the web console, click Operators → Installed Operators and then click the Red Hat OpenShift AI Operator.

3. For installation of KServe, configure the OpenShift Service Mesh component as follows:

a. Click the DSC Initialization tab.

b. Click the default-dsci object.

c. Click the YAML tab.

d. In the spec section, add and configure the serviceMesh component as shown:

spec:
 serviceMesh:
 managementState: Unmanaged

e. Click Save.

4. For installation of KServe, configure the KServe and OpenShift Serverless components as follows:

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-large-models_serving-large-models#creating-a-service-mesh-instance_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-large-models_serving-large-models#creating-a-knative-serving-instance_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-large-models_serving-large-models#creating-secure-gateways-for-knative-serving_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/installing_and_uninstalling_openshift_ai_self-managed/installing-and-deploying-openshift-ai_install#installing-the-openshift-data-science-operator_operator-install
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/installing_and_uninstalling_openshift_ai_self-managed/installing-and-deploying-openshift-ai_install#installing-and-managing-openshift-ai-components_component-install

a. In the web console, click Operators → Installed Operators and then click the Red Hat OpenShift AI

Operator.

b. Click the Data Science Cluster tab.

c. Click the default-dsc DSC object.

d. Click the YAML tab.

e. In the spec.components section, configure the kserve component as shown:

spec:
 components:
 kserve:
 managementState: Managed

f. Within the kserve component, add the serving component, and configure it as shown:

spec:
 components:
 kserve:
 managementState: Managed
 serving:
 managementState: Unmanaged

g. Click Save.

3.4. DEPLOYING MODELS BY USING THE SINGLE MODEL
SERVING PLATFORM

On the single model serving platform, each model is deployed from its own model server. This helps you to deploy,

monitor, scale, and maintain LLMs that require increased resources.

Important

If you want to use a self-signed certificate to deploy a model from S3-compatible storage, the single model

serving platform (which uses KServe) requires additional configuration. For more information, see the Red Hat

Knowledgebase solution article How to use self-signed certificates with KServe.

Alternatively, you can disable SSL authentication for KServe. For more information, see the Red Hat

Knowledgebase solution article How to skip the validation of SSL for KServe.

3.4.1. Enabling the single model serving platform

When you have installed KServe, you can use the Red Hat OpenShift AI dashboard to enable the single model serving

platform. You can also use the dashboard to enable model-serving runtimes for the platform.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the admin group (for example, rhoai-admins) in

OpenShift.

https://access.redhat.com/solutions/7053013
https://access.redhat.com/solutions/7047512

You have installed KServe.

Procedure

1. Enable the single model serving platform as follows:

a. In the left menu, click Settings → Cluster settings.

b. Locate the Model serving platforms section.

c. To enable the single model serving platform for projects, select the Single model serving platform

checkbox.

d. Click Save changes.

2. Enable pre-installed runtimes for the single-model serving platform as follows:

a. In the left menu of the OpenShift AI dashboard, click Settings → Serving runtimes.

The Serving runtimes page shows any custom runtimes that you have added, as well as the following pre-

installed runtimes:

Caikit TGIS ServingRuntime for KServe

OpenVINO Model Server

TGIS Standalone ServingRuntime for KServe (gRPC)

b. Set the runtime that you want to use to Enabled.

The single model serving platform is now available for model deployments.

3.4.2. Adding a custom model-serving runtime for the single model serving
platform

A model-serving runtime adds support for a specified set of model frameworks (that is, formats). You have the option of

using the pre-installed runtimes included with OpenShift AI or adding your own, custom runtimes. This is useful in

instances where the pre-installed runtimes don’t meet your needs. For example, you might find that the TGIS runtime

does not support a particular model format that is supported by Hugging Face Text Generation Inference (TGI). In this

case, you can create a custom runtime to add support for the model.

As an administrator, you can use the OpenShift AI interface to add and enable a custom model-serving runtime. You can

then choose the custom runtime when you deploy a model on the single model serving platform.

Note

OpenShift AI enables you to add your own custom runtimes, but does not support the runtimes themselves. You

are responsible for correctly configuring and maintaining custom runtimes. You are also responsible for ensuring

that you are licensed to use any custom runtimes that you add.

Prerequisites

You have logged in to OpenShift AI as an administrator.

You have built your custom runtime and added the image to a container image repository such as Quay.

Procedure

1. From the OpenShift AI dashboard, click Settings > Serving runtimes.

The Serving runtimes page opens and shows the model-serving runtimes that are already installed and enabled.

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-large-models_serving-large-models#about-the-single-model-serving-platform_serving-large-models
https://huggingface.co/docs/text-generation-inference/supported_models
https://quay.io/

2. To add a custom runtime, choose one of the following options:

To start with an existing runtime (for example, TGIS Standalone ServingRuntime for KServe), click the action

menu (⋮) next to the existing runtime and then click Duplicate.

To add a new custom runtime, click Add serving runtime.

3. In the Select the model serving platforms this runtime supports list, perform one of the following actions:

To add a runtime for only the single model serving platform, select Single-model serving platform.

To add a runtime for both the single- and multi-model serving platforms, select Single-model and multi-model

serving platforms.

4. Optional: If you started a new runtime (rather than duplicating an existing one), add your code by choosing one of

the following options:

Upload a YAML file

Click Upload files.

In the file browser, select a YAML file on your computer.

The embedded YAML editor opens and shows the contents of the file that you uploaded.

Enter YAML code directly in the editor

Click Start from scratch.

Enter or paste YAML code directly in the embedded editor.

Note

In many cases, creating a custom runtime will require adding new or custom parameters to the env
section of the ServingRuntime specification.

5. Click Add.

The Serving runtimes page opens and shows the updated list of runtimes that are installed. Observe that the

runtime you added is automatically enabled.

6. Optional: To edit your custom runtime, click the action menu (⋮) and select Edit.

Verification

The model-serving runtime that you added is shown in an enabled state on the Serving runtimes page.

3.4.3. Deploying models on the single model serving platform

When you have enabled the single model serving platform, you can enable a pre-installed or custom model-serving

runtime and start to deploy models on the platform.

Note

Text Generation Inference Server (TGIS) is based on an early fork of Hugging Face TGI. Red Hat will continue to

develop the standalone TGIS runtime to support TGI models. If a model does not work in the current version of

OpenShift AI, support might be added in a future version. In the meantime, you can also add your own, custom

runtime to support a TGI model. For more information, see Adding a custom model-serving runtime for the

single model serving platform.

Prerequisites

https://github.com/IBM/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-large-models_serving-large-models#adding-a-custom-model-serving-runtime-for-the-single-model-serving-platform_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/serving_models/serving-large-models_serving-large-models#adding-a-custom-model-serving-runtime-for-the-single-model-serving-platform_serving-large-models

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group (for example, rhoai-
users or rhoai-admins) in OpenShift.

You have installed KServe.

You have enabled the single model serving platform.

You have created a data science project.

To use the Caikit-TGIS runtime, you have converted your model to Caikit format. For an example, see Converting

Hugging Face Hub models to Caikit format in the caikit-tgis-serving repository.

You know the folder path for the data connection that you want the model to access.

If you want to use graphics processing units (GPUs) with your model server, you have enabled GPU support in

OpenShift AI. See Enabling GPU support in OpenShift AI.

Procedure

1. In the left menu, click Data Science Projects.

2. Click the name of the project that you want to deploy a model in.

3. In the Models and model servers section, perform one of the following actions:

If you see a Single model serving platform tile, click Deploy model on the tile.

If you do not see any tiles, click the Deploy model button.

The Deploy model dialog opens.

4. Configure properties for deploying your model as follows:

https://github.com/opendatahub-io/caikit-tgis-serving/blob/main/demo/kserve/built-tip.md#bootstrap-process
https://github.com/opendatahub-io/caikit-tgis-serving/blob/main/demo/kserve/built-tip.md#bootstrap-process
https://github.com/opendatahub-io/caikit-tgis-serving/tree/main
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.7/html/managing_resources/managing-cluster-resources_cluster-mgmt#enabling-gpu-support_cluster-mgmt

a. In the Model name field, enter a unique name for the model that you are deploying.

b. In the Serving runtime field, select an enabled runtime.

c. From the Model framework list, select a value.

d. In the Number of model replicas to deploy field, specify a value.

e. From the Model server size list, select a value.

f. To specify the location of your model, perform one of the following sets of actions:

To use an existing data connection

Select Existing data connection.

From the Name list, select a data connection that you previously defined.

In the Path field, enter the folder path that contains the model in your specified data source.

To use a new data connection

To define a new data connection that your model can access, select New data connection.

In the Name field, enter a unique name for the data connection.

In the Access key field, enter the access key ID for your S3-compatible object storage provider.

In the Secret key field, enter the secret access key for the S3-compatible object storage account

that you specified.

In the Endpoint field, enter the endpoint of your S3-compatible object storage bucket.

In the Region field, enter the default region of your S3-compatible object storage account.

In the Bucket field, enter the name of your S3-compatible object storage bucket.

In the Path field, enter the folder path in your S3-compatible object storage that contains your

data file.

g. Click Deploy.

Verification

Confirm that the deployed model is shown in the Models and model servers section of your project, and on the

Model Serving page of the dashboard with a check mark in the Status column.

3.4.4. Accessing the inference endpoints for models deployed on the single
model serving platform

When you deploy a model by using the single model serving platform, the model is available as a service that you can

access using API requests. This enables you to return predictions based on data inputs. To use API requests to interact

with your deployed model, you must know how to access the inference endpoints that are available.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group (for example, rhoai-
users or rhoai-admins) in OpenShift.

You have deployed a model by using the single model serving platform.

Procedure

1. From the OpenShift AI dashboard, click Model Serving.

2. From the Project list, select the project that you deployed a model in.

3. In the Deployed models table, for the model that you want to access, copy the URL shown in the Inference

endpoint column.

4. Depending on what action you want to perform with the model (and if the model supports that action), add one of

the following paths to the end of the inference endpoint URL:

Caikit TGIS ServingRuntime for KServe

:443/api/v1/task/text-generation

:443/api/v1/task/server-streaming-text-generation

TGIS Standalone ServingRuntime for KServe (gRPC)

:443 fmaas.GenerationService/Generate

:443 fmaas.GenerationService/GenerateStream

Note

To query the endpoints for the TGIS standalone runtime, you must also download the files in the

proto directory of the IBM text-generation-inference repository.

OpenVINO Model Server

/v2/models/<model-name>/infer

https://github.com/IBM/text-generation-inference

As indicated by the paths shown, the single model serving platform uses the HTTPS port of your OpenShift router

(usually port 443) to serve external API requests.

5. Use the endpoints to make API requests to your deployed model, as shown in the following example commands:

Caikit TGIS ServingRuntime for KServe

curl --json '{"model_id": "<model_name>", "inputs": "<text>"}'
https://<inference_endpoint_url>:443/api/v1/task/server-streaming-text-
generation

TGIS Standalone ServingRuntime for KServe (gRPC)

grpcurl -proto text-generation-inference/proto/generation.proto -d
'{"requests": [{"text":"<text>"}]}' -H 'mm-model-id: <model_name>' -
insecure <inference_endpoint_url>:443 fmaas.GenerationService/Generate

OpenVINO Model Server

curl -ks <inference_endpoint_url>/v2/models/<model_name>/infer -d '{
"model_name": "<model_name>", "inputs": [{ "name": "
<name_of_model_input>", "shape": [<shape>], "datatype": "<data_type>",
"data": [<data>] }]}'

Additional resources

Text Generation Inference Server (TGIS)

Caikit API documentation

OpenVINO KServe-compatible REST API documentation

https://github.com/IBM/text-generation-inference
https://caikit.readthedocs.io/en/latest/autoapi/caikit/index.html
https://docs.openvino.ai/2023.3/ovms_docs_rest_api_kfs.html

3.5. CONFIGURING MONITORING FOR THE SINGLE MODEL
SERVING PLATFORM

The single model serving platform includes metrics for Caikit and TGIS. You can also configure monitoring for OpenShift

Service Mesh. The service mesh metrics helps you to understand dependencies and traffic flow between components in

the mesh. When you have configured monitoring, you can grant Prometheus access to scrape the available metrics.

Prerequisites

You have cluster administrator privileges for your OpenShift Container Platform cluster.

You have created OpenShift Service Mesh and Knative Serving instances and installed KServe.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing the OpenShift CLI.

You are familiar with creating a config map for monitoring a user-defined workflow. You will perform similar steps in this

procedure.

You are familiar with enabling monitoring for user-defined projects in OpenShift. You will perform similar steps in this

procedure.

You have assigned the monitoring-rules-view role to users that will monitor metrics.

Procedure

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a cluster administrator, log in to

the OpenShift CLI as shown in the following example:

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>

2. Define a ConfigMap object in a YAML file called uwm-cm-conf.yaml with the following contents:

https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://docs.openshift.com/container-platform/4.14/monitoring/configuring-the-monitoring-stack.html#creating-user-defined-workload-monitoring-configmap_configuring-the-monitoring-stack
https://docs.openshift.com/container-platform/4.14/monitoring/enabling-monitoring-for-user-defined-projects.html
https://docs.openshift.com/container-platform/4.14/monitoring/enabling-monitoring-for-user-defined-projects.html#granting-users-permission-to-monitor-user-defined-projects_enabling-monitoring-for-user-defined-projects

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 logLevel: debug
 retention: 15d

The user-workload-monitoring-config object configures the components that monitor user-defined

projects. Observe that the retention time is set to the recommended value of 15 days.

3. Apply the configuration to create the user-workload-monitoring-config object.

$ oc apply -f uwm-cm-conf.yaml

4. Define another ConfigMap object in a YAML file called uwm-cm-enable.yaml with the following contents:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true

The cluster-monitoring-config object enables monitoring for user-defined projects.

5. Apply the configuration to create the cluster-monitoring-config object.

$ oc apply -f uwm-cm-enable.yaml

6. Create ServiceMonitor and PodMonitor objects to monitor metrics in the service mesh control plane as

follows:

a. Create an istiod-monitor.yaml YAML file with the following contents:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: istiod-monitor
 namespace: istio-system
spec:
 targetLabels:
 - app
 selector:
 matchLabels:
 istio: pilot
 endpoints:
 - port: http-monitoring
 interval: 30s

b. Deploy the ServiceMonitor CR in the specified istio-system namespace.

$ oc apply -f istiod-monitor.yaml

You see the following output:

servicemonitor.monitoring.coreos.com/istiod-monitor created

c. Create an istio-proxies-monitor.yaml YAML file with the following contents:

apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
 name: istio-proxies-monitor
 namespace: istio-system
spec:
 selector:
 matchExpressions:
 - key: istio-prometheus-ignore
 operator: DoesNotExist
 podMetricsEndpoints:
 - path: /stats/prometheus
 interval: 30s

d. Deploy the PodMonitor CR in the specified istio-system namespace.

$ oc apply -f istio-proxies-monitor.yaml

You see the following output:

podmonitor.monitoring.coreos.com/istio-proxies-monitor created

3.6. VIEWING METRICS FOR THE SINGLE MODEL SERVING
PLATFORM

When a cluster administrator has configured monitoring for the single model serving platform, non-admin users can use

the OpenShift web console to view metrics.

Prerequisites

A cluster administrator has configured monitoring for the single model serving platform.

You have been assigned the monitoring-rules-view role.

You are familiar with how to monitor project metrics in the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Switch to the Developer perspective.

3. In the left menu, click Observe.

4. As described in monitoring project metrics, use the web console to run queries for caikit_*, tgi_*, ovms_* or

istio_* metrics.

https://docs.openshift.com/container-platform/4.14/monitoring/enabling-monitoring-for-user-defined-projects.html#granting-users-permission-to-monitor-user-defined-projects_enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/building_applications/odc-monitoring-project-and-application-metrics-using-developer-perspective#odc-monitoring-your-project-metrics_monitoring-project-and-application-metrics-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/building_applications/odc-monitoring-project-and-application-metrics-using-developer-perspective#odc-monitoring-your-project-metrics_monitoring-project-and-application-metrics-using-developer-perspective

CHAPTER 4. MONITORING MODEL
PERFORMANCE

4.1. VIEWING PERFORMANCE METRICS FOR ALL MODELS ON A
MODEL SERVER

In OpenShift AI, you can monitor the following metrics for all the models that are deployed on a model server:

HTTP requests - The number of HTTP requests that have failed or succeeded for all models on the server.

Note: You can also view the number of HTTP requests that have failed or succeeded for a specific model, as described

in Viewing HTTP request metrics for a deployed model.

Average response time (ms) - For all models on the server, the average time it takes the model server to respond to

requests.

CPU utilization (%) - The percentage of the CPU’s capacity that is currently being used by all models on the server.

Memory utilization (%) - The percentage of the system’s memory that is currently being used by all models on the

server.

You can specify a time range and a refresh interval for these metrics to help you determine, for example, when the peak

usage hours are and how the models are performing at a specified time.

Prerequisites

You have installed Red Hat OpenShift AI.

On the OpenShift cluster where OpenShift AI is installed, user workload monitoring is enabled.

You have logged in to OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group (for example, rhoai-

users or rhoai-admins) in OpenShift.

There are deployed data science models in your data science project.

Procedure

1. From the OpenShift AI dashboard navigation menu, click Data Science Projects and then select the project that

contains the data science models that you want to monitor.

2. On the Components page, scroll down to the Models and model servers section.

3. In the row for the model server that you are interested in, click the action menu (⋮) and then select View model

server metrics.

4. Optional: On the metrics page for the model server, set the following options:

Time range - Specifies how long to track the metrics. You can select one of these values: 1 hour, 24 hours, 7

days, and 30 days.

Refresh interval - Specifies how frequently the graphs on the metrics page are refreshed (to show the latest

data). You can select one of these values: 15 seconds, 30 seconds, 1 minute, 5 minutes, 15 minutes, 30 minutes, 1

hour, 2 hours, and 1 day.

5. Scroll down to view data graphs for HTTP requests, average response time, CPU utilization, and memory utilization.

Verification

On the metrics page for the model server, the graphs provide performance metric data.

4.2. VIEWING HTTP REQUEST METRICS FOR A DEPLOYED
MODEL

You can view a graph that illustrates the HTTP requests that have failed or succeeded for a specific model.

Prerequisites

You have installed Red Hat OpenShift AI.

On the OpenShift cluster where OpenShift AI is installed, user workload monitoring is enabled.

You have logged in to OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group (for example, rhoai-
users or rhoai-admins) in OpenShift.

You have deployed a model in a data science project.

Procedure

1. From the OpenShift AI dashboard navigation menu, select Model Serving.

2. On the Model Serving page, select the model that you are interested in.

3. Optional: On the Endpoint performance tab, set the following options:

Time range - Specifies how long to track the metrics. You can select one of these values: 1 hour, 24 hours, 7

days, and 30 days.

Refresh interval - Specifies how frequently the graphs on the metrics page are refreshed (to show the latest

data). You can select one of these values: 15 seconds, 30 seconds, 1 minute, 5 minutes, 15 minutes, 30 minutes, 1

hour, 2 hours, and 1 day.

Verification

The Endpoint performance tab shows a graph of the HTTP metrics for the model.

LEGAL NOTICE

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike

3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-

sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL

for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA

to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo,

and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js

open source or commercial project.

The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service

marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack

Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the

OpenStack community.

All other trademarks are the property of their respective owners.

