-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathutils.py
140 lines (110 loc) · 3.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from mpi4py import MPI
import os
import json
import tempfile
import numpy as np
import torch
import time
import subprocess
import torch.distributed as dist
def allreduce(x, average):
if mpi_size() > 1:
dist.all_reduce(x, dist.ReduceOp.SUM)
return x / mpi_size() if average else x
def get_cpu_stats_over_ranks(stat_dict):
keys = sorted(stat_dict.keys())
allreduced = allreduce(torch.stack([torch.as_tensor(stat_dict[k]).detach().cuda().float() for k in keys]), average=True).cpu()
return {k: allreduced[i].item() for (i, k) in enumerate(keys)}
class Hyperparams(dict):
def __getattr__(self, attr):
try:
return self[attr]
except KeyError:
return None
def __setattr__(self, attr, value):
self[attr] = value
def logger(log_prefix):
'Prints the arguments out to stdout, .txt, and .jsonl files'
jsonl_path = f'{log_prefix}.jsonl'
txt_path = f'{log_prefix}.txt'
def log(*args, pprint=False, **kwargs):
if mpi_rank() != 0:
return
t = time.ctime()
argdict = {'time': t}
if len(args) > 0:
argdict['message'] = ' '.join([str(x) for x in args])
argdict.update(kwargs)
txt_str = []
args_iter = sorted(argdict) if pprint else argdict
for k in args_iter:
val = argdict[k]
if isinstance(val, np.ndarray):
val = val.tolist()
elif isinstance(val, np.integer):
val = int(val)
elif isinstance(val, np.floating):
val = float(val)
argdict[k] = val
if isinstance(val, float):
val = f'{val:.5f}'
txt_str.append(f'{k}: {val}')
txt_str = ', '.join(txt_str)
if pprint:
json_str = json.dumps(argdict, sort_keys=True)
txt_str = json.dumps(argdict, sort_keys=True, indent=4)
else:
json_str = json.dumps(argdict)
print(txt_str, flush=True)
with open(txt_path, "a+") as f:
print(txt_str, file=f, flush=True)
with open(jsonl_path, "a+") as f:
print(json_str, file=f, flush=True)
return log
def maybe_download(path, filename=None):
'''If a path is a gsutil path, download it and return the local link,
otherwise return link'''
if not path.startswith('gs://'):
return path
if filename:
local_dest = f'/tmp/'
out_path = f'/tmp/{filename}'
if os.path.isfile(out_path):
return out_path
subprocess.check_output(['gsutil', '-m', 'cp', '-R', path, out_path])
return out_path
else:
local_dest = tempfile.mkstemp()[1]
subprocess.check_output(['gsutil', '-m', 'cp', path, local_dest])
return local_dest
def tile_images(images, d1=4, d2=4, border=1):
id1, id2, c = images[0].shape
out = np.ones([d1 * id1 + border * (d1 + 1),
d2 * id2 + border * (d2 + 1),
c], dtype=np.uint8)
out *= 255
if len(images) != d1 * d2:
raise ValueError('Wrong num of images')
for imgnum, im in enumerate(images):
num_d1 = imgnum // d2
num_d2 = imgnum % d2
start_d1 = num_d1 * id1 + border * (num_d1 + 1)
start_d2 = num_d2 * id2 + border * (num_d2 + 1)
out[start_d1:start_d1 + id1, start_d2:start_d2 + id2, :] = im
return out
def mpi_size():
return MPI.COMM_WORLD.Get_size()
def mpi_rank():
return MPI.COMM_WORLD.Get_rank()
def num_nodes():
nn = mpi_size()
if nn % 8 == 0:
return nn // 8
return nn // 8 + 1
def gpus_per_node():
size = mpi_size()
if size > 1:
return max(size // num_nodes(), 1)
return 1
def local_mpi_rank():
return mpi_rank() % gpus_per_node()