-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
beit_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
130 lines (121 loc) · 3.66 KB
/
beit_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
_base_ = '../_base_/default_runtime.py'
# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
type='TwoNormDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
second_mean=[-31.875, -31.875, -31.875],
second_std=[318.75, 318.75, 318.75],
to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='RandomResizedCropAndInterpolationWithTwoPic',
size=224,
second_size=112,
interpolation='bicubic',
second_interpolation='lanczos',
scale=(0.08, 1.0)),
dict(
type='BEiTMaskGenerator',
input_size=(14, 14),
num_masking_patches=75,
max_num_patches=None,
min_num_patches=16),
dict(type='PackInputs')
]
train_dataloader = dict(
batch_size=256,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix=dict(img_path='train/'),
pipeline=train_pipeline))
# model settings
model = dict(
type='BEiT',
backbone=dict(
type='BEiTPretrainViT',
arch='base',
patch_size=16,
drop_path_rate=0.1,
final_norm=True,
out_type='raw',
layer_scale_init_value=0.1,
init_cfg=[
dict(type='TruncNormal', std=0.02, layer='Linear'),
dict(type='TruncNormal', std=0.02, layer='Conv2d'),
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
]),
neck=None,
head=dict(
type='BEiTV1Head',
embed_dims=768,
num_embed=8192,
loss=dict(type='CrossEntropyLoss')),
target_generator=dict(
type='DALL-E',
init_cfg=dict(
type='Pretrained',
checkpoint= # noqa: E251
'https://download.openmmlab.com/mmselfsup/1.x/target_generator_ckpt/dalle_encoder.pth', # noqa: E501
)))
# optimizer wrapper
optim_wrapper = dict(
type='AmpOptimWrapper',
loss_scale='dynamic',
optimizer=dict(
type='AdamW', lr=1.5e-3, betas=(0.9, 0.999), weight_decay=0.05),
clip_grad=dict(max_norm=3.0),
paramwise_cfg=dict(
custom_keys={
# the following configurations are designed for BEiT
'.ln': dict(decay_mult=0.0),
'.bias': dict(decay_mult=0.0),
'q_bias': dict(decay_mult=0.0),
'v_bias': dict(decay_mult=0.0),
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0),
'.gamma': dict(decay_mult=0.0),
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
eta_min=1e-5,
by_epoch=True,
begin=10,
end=300,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
randomness = dict(seed=0, diff_rank_seed=True)
find_unused_parameters = True
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=2048)