From 92fd1c77164ddd2e43df9cb2fa5ec07d839a8f86 Mon Sep 17 00:00:00 2001 From: Ezra-Yu <1105212286@qq.com> Date: Tue, 3 Aug 2021 17:56:11 +0800 Subject: [PATCH] Support default target_weight as None in losses (#829) --- mmpose/models/losses/classfication_loss.py | 3 ++- mmpose/models/losses/regression_loss.py | 18 ++++++++++++------ 2 files changed, 14 insertions(+), 7 deletions(-) diff --git a/mmpose/models/losses/classfication_loss.py b/mmpose/models/losses/classfication_loss.py index ba87306cb7..35fc0930dc 100644 --- a/mmpose/models/losses/classfication_loss.py +++ b/mmpose/models/losses/classfication_loss.py @@ -14,7 +14,7 @@ def __init__(self, use_target_weight=False, loss_weight=1.): self.use_target_weight = use_target_weight self.loss_weight = loss_weight - def forward(self, output, target, target_weight): + def forward(self, output, target, target_weight=None): """Forward function. Note: @@ -29,6 +29,7 @@ def forward(self, output, target, target_weight): """ if self.use_target_weight: + assert target_weight is not None loss = self.criterion(output, target, reduction='none') if target_weight.dim() == 1: target_weight = target_weight[:, None] diff --git a/mmpose/models/losses/regression_loss.py b/mmpose/models/losses/regression_loss.py index 599824ab21..6160ea24ce 100644 --- a/mmpose/models/losses/regression_loss.py +++ b/mmpose/models/losses/regression_loss.py @@ -23,7 +23,7 @@ def __init__(self, use_target_weight=False, loss_weight=1.): self.use_target_weight = use_target_weight self.loss_weight = loss_weight - def forward(self, output, target, target_weight): + def forward(self, output, target, target_weight=None): """Forward function. Note: @@ -38,6 +38,7 @@ def forward(self, output, target, target_weight): Weights across different joint types. """ if self.use_target_weight: + assert target_weight is not None loss = self.criterion(output * target_weight, target * target_weight) else: @@ -91,7 +92,7 @@ def criterion(self, pred, target): self.omega * torch.log(1.0 + delta / self.epsilon), delta - self.C) return torch.mean(torch.sum(losses, dim=[1, 2]), dim=0) - def forward(self, output, target, target_weight): + def forward(self, output, target, target_weight=None): """Forward function. Note: @@ -106,6 +107,7 @@ def forward(self, output, target, target_weight): Weights across different joint types. """ if self.use_target_weight: + assert target_weight is not None loss = self.criterion(output * target_weight, target * target_weight) else: @@ -129,7 +131,7 @@ def __init__(self, use_target_weight=False, loss_weight=1.): self.use_target_weight = use_target_weight self.loss_weight = loss_weight - def forward(self, output, target, target_weight): + def forward(self, output, target, target_weight=None): """Forward function. Note: @@ -145,6 +147,7 @@ def forward(self, output, target, target_weight): """ if self.use_target_weight: + assert target_weight is not None loss = torch.mean( torch.norm((output - target) * target_weight, dim=-1)) else: @@ -163,7 +166,7 @@ def __init__(self, use_target_weight=False, loss_weight=1.): self.use_target_weight = use_target_weight self.loss_weight = loss_weight - def forward(self, output, target, target_weight): + def forward(self, output, target, target_weight=None): """Forward function. Note: @@ -177,6 +180,7 @@ def forward(self, output, target, target_weight): Weights across different joint types. """ if self.use_target_weight: + assert target_weight is not None loss = self.criterion(output * target_weight, target * target_weight) else: @@ -195,7 +199,7 @@ def __init__(self, use_target_weight=False, loss_weight=1.): self.use_target_weight = use_target_weight self.loss_weight = loss_weight - def forward(self, output, target, target_weight): + def forward(self, output, target, target_weight=None): """Forward function. Note: @@ -209,6 +213,7 @@ def forward(self, output, target, target_weight): Weights across different joint types. """ if self.use_target_weight: + assert target_weight is not None loss = self.criterion(output * target_weight, target * target_weight) else: @@ -239,7 +244,7 @@ def __init__(self, joint_parents, use_target_weight=False, loss_weight=1.): if i != self.joint_parents[i]: self.non_root_indices.append(i) - def forward(self, output, target, target_weight): + def forward(self, output, target, target_weight=None): """Forward function. Note: @@ -260,6 +265,7 @@ def forward(self, output, target, target_weight): target - target[:, self.joint_parents, :], dim=-1)[:, self.non_root_indices] if self.use_target_weight: + assert target_weight is not None loss = torch.mean( torch.abs((output_bone * target_weight).mean(dim=0) - (target_bone * target_weight).mean(dim=0)))