-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
point-rend_r50-caffe_fpn_ms-1x_coco.py
44 lines (44 loc) · 1.41 KB
/
point-rend_r50-caffe_fpn_ms-1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
_base_ = '../mask_rcnn/mask-rcnn_r50-caffe_fpn_ms-1x_coco.py'
# model settings
model = dict(
type='PointRend',
roi_head=dict(
type='PointRendRoIHead',
mask_roi_extractor=dict(
type='GenericRoIExtractor',
aggregation='concat',
roi_layer=dict(
_delete_=True, type='SimpleRoIAlign', output_size=14),
out_channels=256,
featmap_strides=[4]),
mask_head=dict(
_delete_=True,
type='CoarseMaskHead',
num_fcs=2,
in_channels=256,
conv_out_channels=256,
fc_out_channels=1024,
num_classes=80,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
point_head=dict(
type='MaskPointHead',
num_fcs=3,
in_channels=256,
fc_channels=256,
num_classes=80,
coarse_pred_each_layer=True,
loss_point=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rcnn=dict(
mask_size=7,
num_points=14 * 14,
oversample_ratio=3,
importance_sample_ratio=0.75)),
test_cfg=dict(
rcnn=dict(
subdivision_steps=5,
subdivision_num_points=28 * 28,
scale_factor=2)))