diff --git a/demo/csrc/object_detection.cpp b/demo/csrc/object_detection.cpp index c190a0a1d5..a57b4f41f6 100644 --- a/demo/csrc/object_detection.cpp +++ b/demo/csrc/object_detection.cpp @@ -37,12 +37,42 @@ int main(int argc, char *argv[]) { return 1; } - fprintf(stderr, "bbox_count=%d\n", *res_count); + fprintf(stdout, "bbox_count=%d\n", *res_count); for (int i = 0; i < *res_count; ++i) { const auto &box = bboxes[i].bbox; - fprintf(stderr, "box %d, left=%.2f, top=%.2f, right=%.2f, bottom=%.2f, label=%d, score=%.4f\n", + const auto &mask = bboxes[i].mask; + + fprintf(stdout, "box %d, left=%.2f, top=%.2f, right=%.2f, bottom=%.2f, label=%d, score=%.4f\n", i, box.left, box.top, box.right, box.bottom, bboxes[i].label_id, bboxes[i].score); + + // skip detections with invalid bbox size (bbox height or width < 1) + if ((box.right - box.left) < 1 || (box.bottom - box.top) < 1) { + continue; + } + + // skip detections less than specified score threshold + if (bboxes[i].score < 0.1) { + continue; + } + + // generate mask overlay if model exports masks + if (mask != nullptr) { + fprintf(stdout, "mask %d, height=%d, width=%d\n", i, mask->height, mask->width); + + cv::Mat imgMask(mask->height, mask->width, CV_8UC1, &mask->data[0]); + auto x0 = std::max(std::floor(box.left) - 1, 0.f); + auto y0 = std::max(std::floor(box.top) - 1, 0.f); + cv::Rect roi((int)x0, (int)y0, mask->width, mask->height); + + // split the RGB channels, overlay mask to a specific color channel + cv::Mat ch[3]; + split(img, ch); + int col = 0; // int col = i % 3; + cv::bitwise_or(imgMask, ch[col](roi), ch[col](roi)); + merge(ch, 3, img); + } + cv::rectangle(img, cv::Point{(int)box.left, (int)box.top}, cv::Point{(int)box.right, (int)box.bottom}, cv::Scalar{0, 255, 0}); }