-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
stylegan3-r_ada-gamma3.3_8xb4-fp16_metfaces-1024x1024.py
117 lines (101 loc) · 3 KB
/
stylegan3-r_ada-gamma3.3_8xb4-fp16_metfaces-1024x1024.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
_base_ = [
'../_base_/models/base_styleganv3.py',
'../_base_/datasets/ffhq_flip.py',
'../_base_/gen_default_runtime.py',
]
synthesis_cfg = {
'type': 'SynthesisNetwork',
'channel_base': 65536,
'channel_max': 1024,
'magnitude_ema_beta': 0.999,
'conv_kernel': 1,
'use_radial_filters': True
}
r1_gamma = 3.3 # set by user
d_reg_interval = 16
g_reg_interval = 4
g_reg_ratio = g_reg_interval / (g_reg_interval + 1)
d_reg_ratio = d_reg_interval / (d_reg_interval + 1)
load_from = 'https://download.openmmlab.com/mmediting/stylegan3/stylegan3_r_ffhq_1024_b4x8_cvt_official_rgb_20220329_234933-ac0500a1.pth' # noqa
# ada settings
aug_kwargs = {
'xflip': 1,
'rotate90': 1,
'xint': 1,
'scale': 1,
'rotate': 1,
'aniso': 1,
'xfrac': 1,
'brightness': 1,
'contrast': 1,
'lumaflip': 1,
'hue': 1,
'saturation': 1
}
ema_half_life = 10. # G_smoothing_kimg
ema_kimg = 10
ema_nimg = ema_kimg * 1000
ema_beta = 0.5**(32 / max(ema_nimg, 1e-8))
ema_config = dict(
type='ExponentialMovingAverage',
interval=1,
momentum=ema_beta,
start_iter=0)
model = dict(
generator=dict(
out_size=1024,
img_channels=3,
rgb2bgr=True,
synthesis_cfg=synthesis_cfg),
discriminator=dict(
type='ADAStyleGAN2Discriminator',
in_size=1024,
input_bgr2rgb=True,
data_aug=dict(type='ADAAug', aug_pipeline=aug_kwargs, ada_kimg=100)),
loss_config=dict(
r1_loss_weight=r1_gamma / 2.0 * d_reg_interval,
r1_interval=d_reg_interval,
norm_mode='HWC'),
ema_config=ema_config)
optim_wrapper = dict(
generator=dict(
optimizer=dict(
type='Adam', lr=0.0025 * g_reg_ratio, betas=(0,
0.99**g_reg_ratio))),
discriminator=dict(
optimizer=dict(
type='Adam', lr=0.002 * d_reg_ratio, betas=(0,
0.99**d_reg_ratio))))
batch_size = 4
data_root = 'data/metfaces/images/'
train_dataloader = dict(
batch_size=batch_size, dataset=dict(data_root=data_root))
val_dataloader = dict(batch_size=batch_size, dataset=dict(data_root=data_root))
test_dataloader = dict(
batch_size=batch_size, dataset=dict(data_root=data_root))
train_cfg = dict(max_iters=160000)
# VIS_HOOK
custom_hooks = [
dict(
type='VisualizationHook',
interval=5000,
fixed_input=True,
vis_kwargs_list=dict(type='GAN', name='fake_img'))
]
# METRICS
metrics = [
dict(
type='FrechetInceptionDistance',
prefix='FID-Full-50k',
fake_nums=50000,
inception_style='StyleGAN',
sample_model='ema')
]
# NOTE: config for save multi best checkpoints
# default_hooks = dict(
# checkpoint=dict(
# save_best=['FID-Full-50k/fid', 'IS-50k/is'],
# rule=['less', 'greater']))
default_hooks = dict(checkpoint=dict(save_best='FID-Full-50k/fid'))
val_evaluator = dict(metrics=metrics)
test_evaluator = dict(metrics=metrics)