-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
stgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d.py
102 lines (93 loc) · 2.96 KB
/
stgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
_base_ = '../../_base_/default_runtime.py'
model = dict(
type='RecognizerGCN',
backbone=dict(
type='STGCN', graph_cfg=dict(layout='coco', mode='stgcn_spatial')),
cls_head=dict(type='GCNHead', num_classes=60, in_channels=256))
dataset_type = 'PoseDataset'
ann_file = 'data/skeleton/ntu60_2d.pkl'
train_pipeline = [
dict(type='PreNormalize2D'),
dict(type='GenSkeFeat', dataset='coco', feats=['j']),
dict(type='UniformSampleFrames', clip_len=100),
dict(type='PoseDecode'),
dict(type='FormatGCNInput', num_person=2),
dict(type='PackActionInputs')
]
val_pipeline = [
dict(type='PreNormalize2D'),
dict(type='GenSkeFeat', dataset='coco', feats=['j']),
dict(
type='UniformSampleFrames', clip_len=100, num_clips=1, test_mode=True),
dict(type='PoseDecode'),
dict(type='FormatGCNInput', num_person=2),
dict(type='PackActionInputs')
]
test_pipeline = [
dict(type='PreNormalize2D'),
dict(type='GenSkeFeat', dataset='coco', feats=['j']),
dict(
type='UniformSampleFrames', clip_len=100, num_clips=10,
test_mode=True),
dict(type='PoseDecode'),
dict(type='FormatGCNInput', num_person=2),
dict(type='PackActionInputs')
]
train_dataloader = dict(
batch_size=16,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='RepeatDataset',
times=5,
dataset=dict(
type=dataset_type,
ann_file=ann_file,
pipeline=train_pipeline,
split='xsub_train')))
val_dataloader = dict(
batch_size=16,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file,
pipeline=val_pipeline,
split='xsub_val',
test_mode=True))
test_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file,
pipeline=test_pipeline,
split='xsub_val',
test_mode=True))
val_evaluator = [dict(type='AccMetric')]
test_evaluator = val_evaluator
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=16, val_begin=1, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
dict(
type='CosineAnnealingLR',
eta_min=0,
T_max=16,
by_epoch=True,
convert_to_iter_based=True)
]
optim_wrapper = dict(
optimizer=dict(
type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True))
default_hooks = dict(checkpoint=dict(interval=1), logger=dict(interval=100))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (16 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=128)