-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
stgcn_8xb16-bone-u100-80e_ntu60-xsub-keypoint-2d.py
67 lines (65 loc) · 1.96 KB
/
stgcn_8xb16-bone-u100-80e_ntu60-xsub-keypoint-2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
_base_ = 'stgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d.py'
dataset_type = 'PoseDataset'
ann_file = 'data/skeleton/ntu60_2d.pkl'
train_pipeline = [
dict(type='PreNormalize2D'),
dict(type='GenSkeFeat', dataset='coco', feats=['b']),
dict(type='UniformSampleFrames', clip_len=100),
dict(type='PoseDecode'),
dict(type='FormatGCNInput', num_person=2),
dict(type='PackActionInputs')
]
val_pipeline = [
dict(type='PreNormalize2D'),
dict(type='GenSkeFeat', dataset='coco', feats=['b']),
dict(
type='UniformSampleFrames', clip_len=100, num_clips=1, test_mode=True),
dict(type='PoseDecode'),
dict(type='FormatGCNInput', num_person=2),
dict(type='PackActionInputs')
]
test_pipeline = [
dict(type='PreNormalize2D'),
dict(type='GenSkeFeat', dataset='coco', feats=['b']),
dict(
type='UniformSampleFrames', clip_len=100, num_clips=10,
test_mode=True),
dict(type='PoseDecode'),
dict(type='FormatGCNInput', num_person=2),
dict(type='PackActionInputs')
]
train_dataloader = dict(
batch_size=16,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='RepeatDataset',
times=5,
dataset=dict(
type=dataset_type,
ann_file=ann_file,
pipeline=train_pipeline,
split='xsub_train')))
val_dataloader = dict(
batch_size=16,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file,
pipeline=val_pipeline,
split='xsub_val',
test_mode=True))
test_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file,
pipeline=test_pipeline,
split='xsub_val',
test_mode=True))