-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathdatabase_sampler.py
502 lines (412 loc) · 23 KB
/
database_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import pickle
import os
import copy
import numpy as np
from skimage import io
import torch
import SharedArray
import torch.distributed as dist
from ...ops.iou3d_nms import iou3d_nms_utils
from ...utils import box_utils, common_utils, calibration_kitti
from pcdet.datasets.kitti.kitti_object_eval_python import kitti_common
class DataBaseSampler(object):
def __init__(self, root_path, sampler_cfg, class_names, logger=None):
self.root_path = root_path
self.class_names = class_names
self.sampler_cfg = sampler_cfg
self.img_aug_type = sampler_cfg.get('IMG_AUG_TYPE', None)
self.img_aug_iou_thresh = sampler_cfg.get('IMG_AUG_IOU_THRESH', 0.5)
self.logger = logger
self.db_infos = {}
for class_name in class_names:
self.db_infos[class_name] = []
self.use_shared_memory = sampler_cfg.get('USE_SHARED_MEMORY', False)
for db_info_path in sampler_cfg.DB_INFO_PATH:
db_info_path = self.root_path.resolve() / db_info_path
if not db_info_path.exists():
assert len(sampler_cfg.DB_INFO_PATH) == 1
sampler_cfg.DB_INFO_PATH[0] = sampler_cfg.BACKUP_DB_INFO['DB_INFO_PATH']
sampler_cfg.DB_DATA_PATH[0] = sampler_cfg.BACKUP_DB_INFO['DB_DATA_PATH']
db_info_path = self.root_path.resolve() / sampler_cfg.DB_INFO_PATH[0]
sampler_cfg.NUM_POINT_FEATURES = sampler_cfg.BACKUP_DB_INFO['NUM_POINT_FEATURES']
with open(str(db_info_path), 'rb') as f:
infos = pickle.load(f)
[self.db_infos[cur_class].extend(infos[cur_class]) for cur_class in class_names]
for func_name, val in sampler_cfg.PREPARE.items():
self.db_infos = getattr(self, func_name)(self.db_infos, val)
self.gt_database_data_key = self.load_db_to_shared_memory() if self.use_shared_memory else None
self.sample_groups = {}
self.sample_class_num = {}
self.limit_whole_scene = sampler_cfg.get('LIMIT_WHOLE_SCENE', False)
for x in sampler_cfg.SAMPLE_GROUPS:
class_name, sample_num = x.split(':')
if class_name not in class_names:
continue
self.sample_class_num[class_name] = sample_num
self.sample_groups[class_name] = {
'sample_num': sample_num,
'pointer': len(self.db_infos[class_name]),
'indices': np.arange(len(self.db_infos[class_name]))
}
def __getstate__(self):
d = dict(self.__dict__)
del d['logger']
return d
def __setstate__(self, d):
self.__dict__.update(d)
def __del__(self):
if self.use_shared_memory:
self.logger.info('Deleting GT database from shared memory')
cur_rank, num_gpus = common_utils.get_dist_info()
sa_key = self.sampler_cfg.DB_DATA_PATH[0]
if cur_rank % num_gpus == 0 and os.path.exists(f"/dev/shm/{sa_key}"):
SharedArray.delete(f"shm://{sa_key}")
if num_gpus > 1:
dist.barrier()
self.logger.info('GT database has been removed from shared memory')
def load_db_to_shared_memory(self):
self.logger.info('Loading GT database to shared memory')
cur_rank, world_size, num_gpus = common_utils.get_dist_info(return_gpu_per_machine=True)
assert self.sampler_cfg.DB_DATA_PATH.__len__() == 1, 'Current only support single DB_DATA'
db_data_path = self.root_path.resolve() / self.sampler_cfg.DB_DATA_PATH[0]
sa_key = self.sampler_cfg.DB_DATA_PATH[0]
if cur_rank % num_gpus == 0 and not os.path.exists(f"/dev/shm/{sa_key}"):
gt_database_data = np.load(db_data_path)
common_utils.sa_create(f"shm://{sa_key}", gt_database_data)
if num_gpus > 1:
dist.barrier()
self.logger.info('GT database has been saved to shared memory')
return sa_key
def filter_by_difficulty(self, db_infos, removed_difficulty):
new_db_infos = {}
for key, dinfos in db_infos.items():
pre_len = len(dinfos)
new_db_infos[key] = [
info for info in dinfos
if info['difficulty'] not in removed_difficulty
]
if self.logger is not None:
self.logger.info('Database filter by difficulty %s: %d => %d' % (key, pre_len, len(new_db_infos[key])))
return new_db_infos
def filter_by_min_points(self, db_infos, min_gt_points_list):
for name_num in min_gt_points_list:
name, min_num = name_num.split(':')
min_num = int(min_num)
if min_num > 0 and name in db_infos.keys():
filtered_infos = []
for info in db_infos[name]:
if info['num_points_in_gt'] >= min_num:
filtered_infos.append(info)
if self.logger is not None:
self.logger.info('Database filter by min points %s: %d => %d' %
(name, len(db_infos[name]), len(filtered_infos)))
db_infos[name] = filtered_infos
return db_infos
def sample_with_fixed_number(self, class_name, sample_group):
"""
Args:
class_name:
sample_group:
Returns:
"""
sample_num, pointer, indices = int(sample_group['sample_num']), sample_group['pointer'], sample_group['indices']
if pointer >= len(self.db_infos[class_name]):
indices = np.random.permutation(len(self.db_infos[class_name]))
pointer = 0
sampled_dict = [self.db_infos[class_name][idx] for idx in indices[pointer: pointer + sample_num]]
pointer += sample_num
sample_group['pointer'] = pointer
sample_group['indices'] = indices
return sampled_dict
@staticmethod
def put_boxes_on_road_planes(gt_boxes, road_planes, calib):
"""
Only validate in KITTIDataset
Args:
gt_boxes: (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
road_planes: [a, b, c, d]
calib:
Returns:
"""
a, b, c, d = road_planes
center_cam = calib.lidar_to_rect(gt_boxes[:, 0:3])
cur_height_cam = (-d - a * center_cam[:, 0] - c * center_cam[:, 2]) / b
center_cam[:, 1] = cur_height_cam
cur_lidar_height = calib.rect_to_lidar(center_cam)[:, 2]
mv_height = gt_boxes[:, 2] - gt_boxes[:, 5] / 2 - cur_lidar_height
gt_boxes[:, 2] -= mv_height # lidar view
return gt_boxes, mv_height
def copy_paste_to_image_kitti(self, data_dict, crop_feat, gt_number, point_idxes=None):
kitti_img_aug_type = 'by_depth'
kitti_img_aug_use_type = 'annotation'
image = data_dict['images']
boxes3d = data_dict['gt_boxes']
boxes2d = data_dict['gt_boxes2d']
corners_lidar = box_utils.boxes_to_corners_3d(boxes3d)
if 'depth' in kitti_img_aug_type:
paste_order = boxes3d[:,0].argsort()
paste_order = paste_order[::-1]
else:
paste_order = np.arange(len(boxes3d),dtype=np.int)
if 'reverse' in kitti_img_aug_type:
paste_order = paste_order[::-1]
paste_mask = -255 * np.ones(image.shape[:2], dtype=np.int)
fg_mask = np.zeros(image.shape[:2], dtype=np.int)
overlap_mask = np.zeros(image.shape[:2], dtype=np.int)
depth_mask = np.zeros((*image.shape[:2], 2), dtype=np.float)
points_2d, depth_2d = data_dict['calib'].lidar_to_img(data_dict['points'][:,:3])
points_2d[:,0] = np.clip(points_2d[:,0], a_min=0, a_max=image.shape[1]-1)
points_2d[:,1] = np.clip(points_2d[:,1], a_min=0, a_max=image.shape[0]-1)
points_2d = points_2d.astype(np.int)
for _order in paste_order:
_box2d = boxes2d[_order]
image[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] = crop_feat[_order]
overlap_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] += \
(paste_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] > 0).astype(np.int)
paste_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] = _order
if 'cover' in kitti_img_aug_use_type:
# HxWx2 for min and max depth of each box region
depth_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2],0] = corners_lidar[_order,:,0].min()
depth_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2],1] = corners_lidar[_order,:,0].max()
# foreground area of original point cloud in image plane
if _order < gt_number:
fg_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] = 1
data_dict['images'] = image
# if not self.joint_sample:
# return data_dict
new_mask = paste_mask[points_2d[:,1], points_2d[:,0]]==(point_idxes+gt_number)
if False: # self.keep_raw:
raw_mask = (point_idxes == -1)
else:
raw_fg = (fg_mask == 1) & (paste_mask >= 0) & (paste_mask < gt_number)
raw_bg = (fg_mask == 0) & (paste_mask < 0)
raw_mask = raw_fg[points_2d[:,1], points_2d[:,0]] | raw_bg[points_2d[:,1], points_2d[:,0]]
keep_mask = new_mask | raw_mask
data_dict['points_2d'] = points_2d
if 'annotation' in kitti_img_aug_use_type:
data_dict['points'] = data_dict['points'][keep_mask]
data_dict['points_2d'] = data_dict['points_2d'][keep_mask]
elif 'projection' in kitti_img_aug_use_type:
overlap_mask[overlap_mask>=1] = 1
data_dict['overlap_mask'] = overlap_mask
if 'cover' in kitti_img_aug_use_type:
data_dict['depth_mask'] = depth_mask
return data_dict
def collect_image_crops_kitti(self, info, data_dict, obj_points, sampled_gt_boxes, sampled_gt_boxes2d, idx):
calib_file = kitti_common.get_calib_path(int(info['image_idx']), self.root_path, relative_path=False)
sampled_calib = calibration_kitti.Calibration(calib_file)
points_2d, depth_2d = sampled_calib.lidar_to_img(obj_points[:,:3])
if True: # self.point_refine:
# align calibration metrics for points
points_ract = data_dict['calib'].img_to_rect(points_2d[:,0], points_2d[:,1], depth_2d)
points_lidar = data_dict['calib'].rect_to_lidar(points_ract)
obj_points[:, :3] = points_lidar
# align calibration metrics for boxes
box3d_raw = sampled_gt_boxes[idx].reshape(1,-1)
box3d_coords = box_utils.boxes_to_corners_3d(box3d_raw)[0]
box3d_box, box3d_depth = sampled_calib.lidar_to_img(box3d_coords)
box3d_coord_rect = data_dict['calib'].img_to_rect(box3d_box[:,0], box3d_box[:,1], box3d_depth)
box3d_rect = box_utils.corners_rect_to_camera(box3d_coord_rect).reshape(1,-1)
box3d_lidar = box_utils.boxes3d_kitti_camera_to_lidar(box3d_rect, data_dict['calib'])
box2d = box_utils.boxes3d_kitti_camera_to_imageboxes(box3d_rect, data_dict['calib'],
data_dict['images'].shape[:2])
sampled_gt_boxes[idx] = box3d_lidar[0]
sampled_gt_boxes2d[idx] = box2d[0]
obj_idx = idx * np.ones(len(obj_points), dtype=np.int)
# copy crops from images
img_path = self.root_path / f'training/image_2/{info["image_idx"]}.png'
raw_image = io.imread(img_path)
raw_image = raw_image.astype(np.float32)
raw_center = info['bbox'].reshape(2,2).mean(0)
new_box = sampled_gt_boxes2d[idx].astype(np.int)
new_shape = np.array([new_box[2]-new_box[0], new_box[3]-new_box[1]])
raw_box = np.concatenate([raw_center-new_shape/2, raw_center+new_shape/2]).astype(np.int)
raw_box[0::2] = np.clip(raw_box[0::2], a_min=0, a_max=raw_image.shape[1])
raw_box[1::2] = np.clip(raw_box[1::2], a_min=0, a_max=raw_image.shape[0])
if (raw_box[2]-raw_box[0])!=new_shape[0] or (raw_box[3]-raw_box[1])!=new_shape[1]:
new_center = new_box.reshape(2,2).mean(0)
new_shape = np.array([raw_box[2]-raw_box[0], raw_box[3]-raw_box[1]])
new_box = np.concatenate([new_center-new_shape/2, new_center+new_shape/2]).astype(np.int)
img_crop2d = raw_image[raw_box[1]:raw_box[3],raw_box[0]:raw_box[2]] / 255
return new_box, img_crop2d, obj_points, obj_idx
def sample_gt_boxes_2d_kitti(self, data_dict, sampled_boxes, valid_mask):
mv_height = None
# filter out box2d iou > thres
if self.sampler_cfg.get('USE_ROAD_PLANE', False):
sampled_boxes, mv_height = self.put_boxes_on_road_planes(
sampled_boxes, data_dict['road_plane'], data_dict['calib']
)
# sampled_boxes2d = np.stack([x['bbox'] for x in sampled_dict], axis=0).astype(np.float32)
boxes3d_camera = box_utils.boxes3d_lidar_to_kitti_camera(sampled_boxes, data_dict['calib'])
sampled_boxes2d = box_utils.boxes3d_kitti_camera_to_imageboxes(boxes3d_camera, data_dict['calib'],
data_dict['images'].shape[:2])
sampled_boxes2d = torch.Tensor(sampled_boxes2d)
existed_boxes2d = torch.Tensor(data_dict['gt_boxes2d'])
iou2d1 = box_utils.pairwise_iou(sampled_boxes2d, existed_boxes2d).cpu().numpy()
iou2d2 = box_utils.pairwise_iou(sampled_boxes2d, sampled_boxes2d).cpu().numpy()
iou2d2[range(sampled_boxes2d.shape[0]), range(sampled_boxes2d.shape[0])] = 0
iou2d1 = iou2d1 if iou2d1.shape[1] > 0 else iou2d2
ret_valid_mask = ((iou2d1.max(axis=1)<self.img_aug_iou_thresh) &
(iou2d2.max(axis=1)<self.img_aug_iou_thresh) &
(valid_mask))
sampled_boxes2d = sampled_boxes2d[ret_valid_mask].cpu().numpy()
if mv_height is not None:
mv_height = mv_height[ret_valid_mask]
return sampled_boxes2d, mv_height, ret_valid_mask
def sample_gt_boxes_2d(self, data_dict, sampled_boxes, valid_mask):
mv_height = None
if self.img_aug_type == 'kitti':
sampled_boxes2d, mv_height, ret_valid_mask = self.sample_gt_boxes_2d_kitti(data_dict, sampled_boxes, valid_mask)
else:
raise NotImplementedError
return sampled_boxes2d, mv_height, ret_valid_mask
def initilize_image_aug_dict(self, data_dict, gt_boxes_mask):
img_aug_gt_dict = None
if self.img_aug_type is None:
pass
elif self.img_aug_type == 'kitti':
obj_index_list, crop_boxes2d = [], []
gt_number = gt_boxes_mask.sum().astype(np.int)
gt_boxes2d = data_dict['gt_boxes2d'][gt_boxes_mask].astype(np.int)
gt_crops2d = [data_dict['images'][_x[1]:_x[3],_x[0]:_x[2]] for _x in gt_boxes2d]
img_aug_gt_dict = {
'obj_index_list': obj_index_list,
'gt_crops2d': gt_crops2d,
'gt_boxes2d': gt_boxes2d,
'gt_number': gt_number,
'crop_boxes2d': crop_boxes2d
}
else:
raise NotImplementedError
return img_aug_gt_dict
def collect_image_crops(self, img_aug_gt_dict, info, data_dict, obj_points, sampled_gt_boxes, sampled_gt_boxes2d, idx):
if self.img_aug_type == 'kitti':
new_box, img_crop2d, obj_points, obj_idx = self.collect_image_crops_kitti(info, data_dict,
obj_points, sampled_gt_boxes, sampled_gt_boxes2d, idx)
img_aug_gt_dict['crop_boxes2d'].append(new_box)
img_aug_gt_dict['gt_crops2d'].append(img_crop2d)
img_aug_gt_dict['obj_index_list'].append(obj_idx)
else:
raise NotImplementedError
return img_aug_gt_dict, obj_points
def copy_paste_to_image(self, img_aug_gt_dict, data_dict, points):
if self.img_aug_type == 'kitti':
obj_points_idx = np.concatenate(img_aug_gt_dict['obj_index_list'], axis=0)
point_idxes = -1 * np.ones(len(points), dtype=np.int)
point_idxes[:obj_points_idx.shape[0]] = obj_points_idx
data_dict['gt_boxes2d'] = np.concatenate([img_aug_gt_dict['gt_boxes2d'], np.array(img_aug_gt_dict['crop_boxes2d'])], axis=0)
data_dict = self.copy_paste_to_image_kitti(data_dict, img_aug_gt_dict['gt_crops2d'], img_aug_gt_dict['gt_number'], point_idxes)
if 'road_plane' in data_dict:
data_dict.pop('road_plane')
else:
raise NotImplementedError
return data_dict
def add_sampled_boxes_to_scene(self, data_dict, sampled_gt_boxes, total_valid_sampled_dict, mv_height=None, sampled_gt_boxes2d=None):
gt_boxes_mask = data_dict['gt_boxes_mask']
gt_boxes = data_dict['gt_boxes'][gt_boxes_mask]
gt_names = data_dict['gt_names'][gt_boxes_mask]
points = data_dict['points']
if self.sampler_cfg.get('USE_ROAD_PLANE', False) and mv_height is None:
sampled_gt_boxes, mv_height = self.put_boxes_on_road_planes(
sampled_gt_boxes, data_dict['road_plane'], data_dict['calib']
)
data_dict.pop('calib')
data_dict.pop('road_plane')
obj_points_list = []
# convert sampled 3D boxes to image plane
img_aug_gt_dict = self.initilize_image_aug_dict(data_dict, gt_boxes_mask)
if self.use_shared_memory:
gt_database_data = SharedArray.attach(f"shm://{self.gt_database_data_key}")
gt_database_data.setflags(write=0)
else:
gt_database_data = None
for idx, info in enumerate(total_valid_sampled_dict):
if self.use_shared_memory:
start_offset, end_offset = info['global_data_offset']
obj_points = copy.deepcopy(gt_database_data[start_offset:end_offset])
else:
file_path = self.root_path / info['path']
obj_points = np.fromfile(str(file_path), dtype=np.float32).reshape(
[-1, self.sampler_cfg.NUM_POINT_FEATURES])
if obj_points.shape[0] != info['num_points_in_gt']:
obj_points = np.fromfile(str(file_path), dtype=np.float64).reshape(-1, self.sampler_cfg.NUM_POINT_FEATURES)
assert obj_points.shape[0] == info['num_points_in_gt']
obj_points[:, :3] += info['box3d_lidar'][:3].astype(np.float32)
if self.sampler_cfg.get('USE_ROAD_PLANE', False):
# mv height
obj_points[:, 2] -= mv_height[idx]
if self.img_aug_type is not None:
img_aug_gt_dict, obj_points = self.collect_image_crops(
img_aug_gt_dict, info, data_dict, obj_points, sampled_gt_boxes, sampled_gt_boxes2d, idx
)
obj_points_list.append(obj_points)
obj_points = np.concatenate(obj_points_list, axis=0)
sampled_gt_names = np.array([x['name'] for x in total_valid_sampled_dict])
if self.sampler_cfg.get('FILTER_OBJ_POINTS_BY_TIMESTAMP', False) or obj_points.shape[-1] != points.shape[-1]:
if self.sampler_cfg.get('FILTER_OBJ_POINTS_BY_TIMESTAMP', False):
min_time = min(self.sampler_cfg.TIME_RANGE[0], self.sampler_cfg.TIME_RANGE[1])
max_time = max(self.sampler_cfg.TIME_RANGE[0], self.sampler_cfg.TIME_RANGE[1])
else:
assert obj_points.shape[-1] == points.shape[-1] + 1
# transform multi-frame GT points to single-frame GT points
min_time = max_time = 0.0
time_mask = np.logical_and(obj_points[:, -1] < max_time + 1e-6, obj_points[:, -1] > min_time - 1e-6)
obj_points = obj_points[time_mask]
large_sampled_gt_boxes = box_utils.enlarge_box3d(
sampled_gt_boxes[:, 0:7], extra_width=self.sampler_cfg.REMOVE_EXTRA_WIDTH
)
points = box_utils.remove_points_in_boxes3d(points, large_sampled_gt_boxes)
points = np.concatenate([obj_points[:, :points.shape[-1]], points], axis=0)
gt_names = np.concatenate([gt_names, sampled_gt_names], axis=0)
gt_boxes = np.concatenate([gt_boxes, sampled_gt_boxes], axis=0)
data_dict['gt_boxes'] = gt_boxes
data_dict['gt_names'] = gt_names
data_dict['points'] = points
if self.img_aug_type is not None:
data_dict = self.copy_paste_to_image(img_aug_gt_dict, data_dict, points)
return data_dict
def __call__(self, data_dict):
"""
Args:
data_dict:
gt_boxes: (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
Returns:
"""
gt_boxes = data_dict['gt_boxes']
gt_names = data_dict['gt_names'].astype(str)
existed_boxes = gt_boxes
total_valid_sampled_dict = []
sampled_mv_height = []
sampled_gt_boxes2d = []
for class_name, sample_group in self.sample_groups.items():
if self.limit_whole_scene:
num_gt = np.sum(class_name == gt_names)
sample_group['sample_num'] = str(int(self.sample_class_num[class_name]) - num_gt)
if int(sample_group['sample_num']) > 0:
sampled_dict = self.sample_with_fixed_number(class_name, sample_group)
sampled_boxes = np.stack([x['box3d_lidar'] for x in sampled_dict], axis=0).astype(np.float32)
assert not self.sampler_cfg.get('DATABASE_WITH_FAKELIDAR', False), 'Please use latest codes to generate GT_DATABASE'
iou1 = iou3d_nms_utils.boxes_bev_iou_cpu(sampled_boxes[:, 0:7], existed_boxes[:, 0:7])
iou2 = iou3d_nms_utils.boxes_bev_iou_cpu(sampled_boxes[:, 0:7], sampled_boxes[:, 0:7])
iou2[range(sampled_boxes.shape[0]), range(sampled_boxes.shape[0])] = 0
iou1 = iou1 if iou1.shape[1] > 0 else iou2
valid_mask = ((iou1.max(axis=1) + iou2.max(axis=1)) == 0)
if self.img_aug_type is not None:
sampled_boxes2d, mv_height, valid_mask = self.sample_gt_boxes_2d(data_dict, sampled_boxes, valid_mask)
sampled_gt_boxes2d.append(sampled_boxes2d)
if mv_height is not None:
sampled_mv_height.append(mv_height)
valid_mask = valid_mask.nonzero()[0]
valid_sampled_dict = [sampled_dict[x] for x in valid_mask]
valid_sampled_boxes = sampled_boxes[valid_mask]
existed_boxes = np.concatenate((existed_boxes, valid_sampled_boxes[:, :existed_boxes.shape[-1]]), axis=0)
total_valid_sampled_dict.extend(valid_sampled_dict)
sampled_gt_boxes = existed_boxes[gt_boxes.shape[0]:, :]
if total_valid_sampled_dict.__len__() > 0:
sampled_gt_boxes2d = np.concatenate(sampled_gt_boxes2d, axis=0) if len(sampled_gt_boxes2d) > 0 else None
sampled_mv_height = np.concatenate(sampled_mv_height, axis=0) if len(sampled_mv_height) > 0 else None
data_dict = self.add_sampled_boxes_to_scene(
data_dict, sampled_gt_boxes, total_valid_sampled_dict, sampled_mv_height, sampled_gt_boxes2d
)
data_dict.pop('gt_boxes_mask')
return data_dict