You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I was testing the base model for llama3.1-8b, I found that using the config file in the official readme.md came out with a score of only 43.58, while llama3-8b-turbomind in the official readme.md came out with a score of 54.86, which is an excessive difference. What is the reason for this gap in scores?
Other information
No response
The text was updated successfully, but these errors were encountered:
Prerequisite
Type
I'm evaluating with the officially supported tasks/models/datasets.
Environment
{'CUDA available': True,
'GCC': 'gcc (GCC) 7.3.0',
'MMEngine': '0.10.6',
'MUSA available': False,
'OpenCV': '4.11.0',
'PyTorch': '2.1.0',
'PyTorch compiling details': 'PyTorch built with:\n'
' - GCC 10.2\n'
' - C++ Version: 201703\n'
' - Intel(R) MKL-DNN v3.1.1 (Git Hash '
'64f6bcbcbab628e96f33a62c3e975f8535a7bde4)\n'
' - OpenMP 201511 (a.k.a. OpenMP 4.5)\n'
' - LAPACK is enabled (usually provided by '
'MKL)\n'
' - NNPACK is enabled\n'
' - CPU capability usage: NO AVX\n'
' - Build settings: BLAS_INFO=open, '
'BUILD_TYPE=Release, '
'CXX_COMPILER=/opt/rh/devtoolset-10/root/usr/bin/c++, '
'CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 '
'-fabi-version=11 -fvisibility-inlines-hidden '
'-DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO '
'-DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER '
'-DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK '
'-DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE '
'-O2 -fPIC -Wall -Wextra -Werror=return-type '
'-Werror=non-virtual-dtor -Werror=bool-operation '
'-Wnarrowing -Wno-missing-field-initializers '
'-Wno-type-limits -Wno-array-bounds '
'-Wno-unknown-pragmas -Wno-unused-parameter '
'-Wno-unused-function -Wno-unused-result '
'-Wno-strict-overflow -Wno-strict-aliasing '
'-Wno-stringop-overflow -Wno-psabi '
'-Wno-error=pedantic -Wno-error=old-style-cast '
'-Wno-invalid-partial-specialization '
'-Wno-unused-private-field '
'-Wno-aligned-allocation-unavailable '
'-Wno-missing-braces -fdiagnostics-color=always '
'-faligned-new -Wno-unused-but-set-variable '
'-Wno-maybe-uninitialized -fno-math-errno '
'-fno-trapping-math -Werror=format '
'-Werror=cast-function-type '
'-Wno-stringop-overflow, LAPACK_INFO=open, '
'TORCH_DISABLE_GPU_ASSERTS=ON, '
'TORCH_VERSION=2.1.0, USE_CUDA=OFF, '
'USE_CUDNN=OFF, USE_EIGEN_FOR_BLAS=ON, '
'USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, '
'USE_GLOG=OFF, USE_MKL=OFF, USE_MKLDNN=ON, '
'USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=ON, '
'USE_OPENMP=ON, USE_ROCM=OFF, \n',
'Python': '3.10.16 (main, Dec 11 2024, 16:18:56) [GCC 11.2.0]',
'TorchVision': '0.16.0',
'lmdeploy': "not installed:No module named 'lmdeploy'",
'numpy_random_seed': 2147483648,
'opencompass': '0.3.9+',
'sys.platform': 'linux',
'transformers': '4.48.0'}
Reproduces the problem - code/configuration sample
python run.py --models hf_llama3_1_8b --datasets sanitized_mbpp_gen_742f0c --debug
Reproduces the problem - command or script
python run.py --models hf_llama3_1_8b --datasets sanitized_mbpp_gen_742f0c --debug
Reproduces the problem - error message
When I was testing the base model for llama3.1-8b, I found that using the config file in the official readme.md came out with a score of only 43.58, while llama3-8b-turbomind in the official readme.md came out with a score of 54.86, which is an excessive difference. What is the reason for this gap in scores?
Other information
No response
The text was updated successfully, but these errors were encountered: