diff --git a/tests/completed_perf_testing_models.yaml b/tests/completed_perf_testing_models.yaml index cc79807b3..15fd907c2 100644 --- a/tests/completed_perf_testing_models.yaml +++ b/tests/completed_perf_testing_models.yaml @@ -2583,4 +2583,135 @@ resnet_50-feature_vector: - Identity:0 rtol: 0.05 atol: 0.0005 - concrete_function: 0 \ No newline at end of file + concrete_function: 0 + +albert_base: + disabled: true + model: "/tmp/albert_base" + model_type: saved_model + input_get: get_random + inputs: + "input_mask:0": np.ones([1, 384], dtype=np.int32) + "segment_ids:0": np.ones([1, 384], dtype=np.int32) + "input_ids:0": np.ones([1, 384], dtype=np.int32) + outputs: + - bert/pooler/dense/Tanh:0 + - bert/encoder/transformer/group_0_11/layer_11/inner_group_0/LayerNorm_1/batchnorm/add_1:0 + tag: "" + signature_def: "tokens" + rtol: 0.5 + +albert_lite: + disabled: true + model: "/tmp/albert-lite" + model_type: saved_model + input_get: get_random + inputs: + "input_mask:0": np.ones([1, 384], dtype=np.int32) + "segment_ids:0": np.ones([1, 384], dtype=np.int32) + "input_ids:0": np.ones([1, 384], dtype=np.int32) + outputs: + - bert/pooler/dense/Tanh:0 + - bert/encoder/transformer/group_0_11/layer_11/inner_group_0/LayerNorm_1/batchnorm/add_1:0 + tag: "" + signature_def: "tokens" + rtol: 0.5 + +albert_large: + disabled: true + model: "/tmp/albert_large" + model_type: saved_model + input_get: get_random + inputs: + "input_mask:0": np.ones([1, 384], dtype=np.int32) + "segment_ids:0": np.ones([1, 384], dtype=np.int32) + "input_ids:0": np.ones([1, 384], dtype=np.int32) + outputs: + - bert/pooler/dense/Tanh:0 + - bert/encoder/transformer/group_0_11/layer_11/inner_group_0/LayerNorm_1/batchnorm/add_1:0 + tag: "" + signature_def: "tokens" + rtol: 0.5 + +albert_xlarge: + disabled: true + model: "/tmp/albert_xlarge" + model_type: saved_model + input_get: get_random + inputs: + "input_mask:0": np.ones([1, 384], dtype=np.int32) + "segment_ids:0": np.ones([1, 384], dtype=np.int32) + "input_ids:0": np.ones([1, 384], dtype=np.int32) + outputs: + - bert/pooler/dense/Tanh:0 + - bert/encoder/transformer/group_0_11/layer_11/inner_group_0/LayerNorm_1/batchnorm/add_1:0 + tag: "" + signature_def: "tokens" + large_model: true + check_only_shape: true + structured_outputs: + - pooled_output + - sequence_output + rtol: 0.5 + +albert_xxlarge: + disabled: true + model: "/tmp/albert_xxlarge" + model_type: saved_model + input_get: get_random + inputs: + "input_mask:0": np.ones([1, 384], dtype=np.int32) + "segment_ids:0": np.ones([1, 384], dtype=np.int32) + "input_ids:0": np.ones([1, 384], dtype=np.int32) + outputs: + - bert/pooler/dense/Tanh:0 + - bert/encoder/transformer/group_0_11/layer_11/inner_group_0/LayerNorm_1/batchnorm/add_1:0 + tag: "" + signature_def: "tokens" + large_model: true + check_only_shape: true + structured_outputs: + - pooled_output + - sequence_output + rtol: 0.5 + +efficientnet-edgetpu-L: + disabled: true + url: https://storage.googleapis.com/cloud-tpu-checkpoints/efficientnet/efficientnet-edgetpu-L.tar.gz + model: efficientnet-edgetpu-L/saved_model + model_type: saved_model + input_get: get_beach + inputs: + "images:0": [1, 300, 300, 3] + outputs: + - Softmax:0 + +efficientnet-lite4: + disabled: true + model: /data/NN/mlperf/efficientnet/efficientnet-lite4 + model_type: saved_model + input_get: get_beach + inputs: + "images:0": [1, 224, 224, 3] + outputs: + - Softmax:0 + +efficientnet-qobvel-b0: + disabled: true + model: /data/NN/mlperf/efficientnet/qobvel-b0 + model_type: saved_model + input_get: get_beach + inputs: + "input_1:0": [1, 224, 224, 3] + outputs: + - Identity:0 + +efficientnet-qobvel-b1: + disabled: true + model: /data/NN/mlperf/efficientnet/qobvel-b1 + model_type: saved_model + input_get: get_beach + inputs: + "input_1:0": [1, 240, 240, 3] + outputs: + - Identity:0