forked from facebookresearch/SlowFast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefaults.py
974 lines (728 loc) · 30.7 KB
/
defaults.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""Configs."""
from fvcore.common.config import CfgNode
from . import custom_config
# -----------------------------------------------------------------------------
# Config definition
# -----------------------------------------------------------------------------
_C = CfgNode()
# ---------------------------------------------------------------------------- #
# Batch norm options
# ---------------------------------------------------------------------------- #
_C.BN = CfgNode()
# Precise BN stats.
_C.BN.USE_PRECISE_STATS = False
# Number of samples use to compute precise bn.
_C.BN.NUM_BATCHES_PRECISE = 200
# Weight decay value that applies on BN.
_C.BN.WEIGHT_DECAY = 0.0
# Norm type, options include `batchnorm`, `sub_batchnorm`, `sync_batchnorm`
_C.BN.NORM_TYPE = "batchnorm"
# Parameter for SubBatchNorm, where it splits the batch dimension into
# NUM_SPLITS splits, and run BN on each of them separately independently.
_C.BN.NUM_SPLITS = 1
# Parameter for NaiveSyncBatchNorm3d, where the stats across `NUM_SYNC_DEVICES`
# devices will be synchronized.
_C.BN.NUM_SYNC_DEVICES = 1
# ---------------------------------------------------------------------------- #
# Training options.
# ---------------------------------------------------------------------------- #
_C.TRAIN = CfgNode()
# If True Train the model, else skip training.
_C.TRAIN.ENABLE = True
# Dataset.
_C.TRAIN.DATASET = "kinetics"
# Total mini-batch size.
_C.TRAIN.BATCH_SIZE = 64
# Evaluate model on test data every eval period epochs.
_C.TRAIN.EVAL_PERIOD = 10
# Save model checkpoint every checkpoint period epochs.
_C.TRAIN.CHECKPOINT_PERIOD = 10
# Resume training from the latest checkpoint in the output directory.
_C.TRAIN.AUTO_RESUME = True
# Path to the checkpoint to load the initial weight.
_C.TRAIN.CHECKPOINT_FILE_PATH = ""
# Checkpoint types include `caffe2` or `pytorch`.
_C.TRAIN.CHECKPOINT_TYPE = "pytorch"
# If True, perform inflation when loading checkpoint.
_C.TRAIN.CHECKPOINT_INFLATE = False
# If True, reset epochs when loading checkpoint.
_C.TRAIN.CHECKPOINT_EPOCH_RESET = False
# If set, clear all layer names according to the pattern provided.
_C.TRAIN.CHECKPOINT_CLEAR_NAME_PATTERN = () # ("backbone.",)
# If True, use FP16 for activations
_C.TRAIN.MIXED_PRECISION = False
# ---------------------------------------------------------------------------- #
# Augmentation options.
# ---------------------------------------------------------------------------- #
_C.AUG = CfgNode()
# Whether to enable randaug.
_C.AUG.ENABLE = False
# Number of repeated augmentations to used during training.
# If this is greater than 1, then the actual batch size is
# TRAIN.BATCH_SIZE * AUG.NUM_SAMPLE.
_C.AUG.NUM_SAMPLE = 1
# Not used if using randaug.
_C.AUG.COLOR_JITTER = 0.4
# RandAug parameters.
_C.AUG.AA_TYPE = "rand-m9-mstd0.5-inc1"
# Interpolation method.
_C.AUG.INTERPOLATION = "bicubic"
# Probability of random erasing.
_C.AUG.RE_PROB = 0.25
# Random erasing mode.
_C.AUG.RE_MODE = "pixel"
# Random erase count.
_C.AUG.RE_COUNT = 1
# Do not random erase first (clean) augmentation split.
_C.AUG.RE_SPLIT = False
# ---------------------------------------------------------------------------- #
# MipUp options.
# ---------------------------------------------------------------------------- #
_C.MIXUP = CfgNode()
# Whether to use mixup.
_C.MIXUP.ENABLE = False
# Mixup alpha.
_C.MIXUP.ALPHA = 0.8
# Cutmix alpha.
_C.MIXUP.CUTMIX_ALPHA = 1.0
# Probability of performing mixup or cutmix when either/both is enabled.
_C.MIXUP.PROB = 1.0
# Probability of switching to cutmix when both mixup and cutmix enabled.
_C.MIXUP.SWITCH_PROB = 0.5
# Label smoothing.
_C.MIXUP.LABEL_SMOOTH_VALUE = 0.1
# ---------------------------------------------------------------------------- #
# Testing options
# ---------------------------------------------------------------------------- #
_C.TEST = CfgNode()
# If True test the model, else skip the testing.
_C.TEST.ENABLE = True
# Dataset for testing.
_C.TEST.DATASET = "kinetics"
# Total mini-batch size
_C.TEST.BATCH_SIZE = 8
# Path to the checkpoint to load the initial weight.
_C.TEST.CHECKPOINT_FILE_PATH = ""
# Number of clips to sample from a video uniformly for aggregating the
# prediction results.
_C.TEST.NUM_ENSEMBLE_VIEWS = 10
# Number of crops to sample from a frame spatially for aggregating the
# prediction results.
_C.TEST.NUM_SPATIAL_CROPS = 3
# Checkpoint types include `caffe2` or `pytorch`.
_C.TEST.CHECKPOINT_TYPE = "pytorch"
# Path to saving prediction results file.
_C.TEST.SAVE_RESULTS_PATH = ""
# -----------------------------------------------------------------------------
# ResNet options
# -----------------------------------------------------------------------------
_C.RESNET = CfgNode()
# Transformation function.
_C.RESNET.TRANS_FUNC = "bottleneck_transform"
# Number of groups. 1 for ResNet, and larger than 1 for ResNeXt).
_C.RESNET.NUM_GROUPS = 1
# Width of each group (64 -> ResNet; 4 -> ResNeXt).
_C.RESNET.WIDTH_PER_GROUP = 64
# Apply relu in a inplace manner.
_C.RESNET.INPLACE_RELU = True
# Apply stride to 1x1 conv.
_C.RESNET.STRIDE_1X1 = False
# If true, initialize the gamma of the final BN of each block to zero.
_C.RESNET.ZERO_INIT_FINAL_BN = False
# Number of weight layers.
_C.RESNET.DEPTH = 50
# If the current block has more than NUM_BLOCK_TEMP_KERNEL blocks, use temporal
# kernel of 1 for the rest of the blocks.
_C.RESNET.NUM_BLOCK_TEMP_KERNEL = [[3], [4], [6], [3]]
# Size of stride on different res stages.
_C.RESNET.SPATIAL_STRIDES = [[1], [2], [2], [2]]
# Size of dilation on different res stages.
_C.RESNET.SPATIAL_DILATIONS = [[1], [1], [1], [1]]
# ---------------------------------------------------------------------------- #
# X3D options
# See https://arxiv.org/abs/2004.04730 for details about X3D Networks.
# ---------------------------------------------------------------------------- #
_C.X3D = CfgNode()
# Width expansion factor.
_C.X3D.WIDTH_FACTOR = 1.0
# Depth expansion factor.
_C.X3D.DEPTH_FACTOR = 1.0
# Bottleneck expansion factor for the 3x3x3 conv.
_C.X3D.BOTTLENECK_FACTOR = 1.0 #
# Dimensions of the last linear layer before classificaiton.
_C.X3D.DIM_C5 = 2048
# Dimensions of the first 3x3 conv layer.
_C.X3D.DIM_C1 = 12
# Whether to scale the width of Res2, default is false.
_C.X3D.SCALE_RES2 = False
# Whether to use a BatchNorm (BN) layer before the classifier, default is false.
_C.X3D.BN_LIN5 = False
# Whether to use channelwise (=depthwise) convolution in the center (3x3x3)
# convolution operation of the residual blocks.
_C.X3D.CHANNELWISE_3x3x3 = True
# -----------------------------------------------------------------------------
# Nonlocal options
# -----------------------------------------------------------------------------
_C.NONLOCAL = CfgNode()
# Index of each stage and block to add nonlocal layers.
_C.NONLOCAL.LOCATION = [[[]], [[]], [[]], [[]]]
# Number of group for nonlocal for each stage.
_C.NONLOCAL.GROUP = [[1], [1], [1], [1]]
# Instatiation to use for non-local layer.
_C.NONLOCAL.INSTANTIATION = "dot_product"
# Size of pooling layers used in Non-Local.
_C.NONLOCAL.POOL = [
# Res2
[[1, 2, 2], [1, 2, 2]],
# Res3
[[1, 2, 2], [1, 2, 2]],
# Res4
[[1, 2, 2], [1, 2, 2]],
# Res5
[[1, 2, 2], [1, 2, 2]],
]
# -----------------------------------------------------------------------------
# Model options
# -----------------------------------------------------------------------------
_C.MODEL = CfgNode()
# Model architecture.
_C.MODEL.ARCH = "slowfast"
# Model name
_C.MODEL.MODEL_NAME = "SlowFast"
# The number of classes to predict for the model.
_C.MODEL.NUM_CLASSES = 400
# Loss function.
_C.MODEL.LOSS_FUNC = "cross_entropy"
# Model architectures that has one single pathway.
_C.MODEL.SINGLE_PATHWAY_ARCH = ["2d", "c2d", "i3d", "slow", "x3d", "mvit"]
# Model architectures that has multiple pathways.
_C.MODEL.MULTI_PATHWAY_ARCH = ["slowfast"]
# Dropout rate before final projection in the backbone.
_C.MODEL.DROPOUT_RATE = 0.5
# Randomly drop rate for Res-blocks, linearly increase from res2 to res5
_C.MODEL.DROPCONNECT_RATE = 0.0
# The std to initialize the fc layer(s).
_C.MODEL.FC_INIT_STD = 0.01
# Activation layer for the output head.
_C.MODEL.HEAD_ACT = "softmax"
# Activation checkpointing enabled or not to save GPU memory.
_C.MODEL.ACT_CHECKPOINT = False
# -----------------------------------------------------------------------------
# MViT options
# -----------------------------------------------------------------------------
_C.MVIT = CfgNode()
# Options include `conv`, `max`.
_C.MVIT.MODE = "conv"
# If True, perform pool before projection in attention.
_C.MVIT.POOL_FIRST = False
# If True, use cls embed in the network, otherwise don't use cls_embed in transformer.
_C.MVIT.CLS_EMBED_ON = True
# Kernel size for patchtification.
_C.MVIT.PATCH_KERNEL = [3, 7, 7]
# Stride size for patchtification.
_C.MVIT.PATCH_STRIDE = [2, 4, 4]
# Padding size for patchtification.
_C.MVIT.PATCH_PADDING = [2, 4, 4]
# If True, use 2d patch, otherwise use 3d patch.
_C.MVIT.PATCH_2D = False
# Base embedding dimension for the transformer.
_C.MVIT.EMBED_DIM = 96
# Base num of heads for the transformer.
_C.MVIT.NUM_HEADS = 1
# Dimension reduction ratio for the MLP layers.
_C.MVIT.MLP_RATIO = 4.0
# If use, use bias term in attention fc layers.
_C.MVIT.QKV_BIAS = True
# Drop path rate for the tranfomer.
_C.MVIT.DROPPATH_RATE = 0.1
# Depth of the transformer.
_C.MVIT.DEPTH = 16
# Normalization layer for the transformer. Only layernorm is supported now.
_C.MVIT.NORM = "layernorm"
# Dimension multiplication at layer i. If 2.0 is used, then the next block will increase
# the dimension by 2 times. Format: [depth_i: mul_dim_ratio]
_C.MVIT.DIM_MUL = []
# Head number multiplication at layer i. If 2.0 is used, then the next block will
# increase the number of heads by 2 times. Format: [depth_i: head_mul_ratio]
_C.MVIT.HEAD_MUL = []
# Stride size for the Pool KV at layer i.
# Format: [[i, stride_t_i, stride_h_i, stride_w_i], ...,]
_C.MVIT.POOL_KV_STRIDE = None
# Initial stride size for KV at layer 1. The stride size will be further reduced with
# the raio of MVIT.DIM_MUL. If will overwrite MVIT.POOL_KV_STRIDE if not None.
_C.MVIT.POOL_KV_STRIDE_ADAPTIVE = None
# Stride size for the Pool Q at layer i.
# Format: [[i, stride_t_i, stride_h_i, stride_w_i], ...,]
_C.MVIT.POOL_Q_STRIDE = []
# If not None, overwrite the KV_KERNEL and Q_KERNEL size with POOL_KVQ_CONV_SIZ.
# Otherwise the kernel_size is [s + 1 if s > 1 else s for s in stride_size].
_C.MVIT.POOL_KVQ_KERNEL = None
# If True, perform no decay on positional embedding and cls embedding.
_C.MVIT.ZERO_DECAY_POS_CLS = True
# If True, use norm after stem.
_C.MVIT.NORM_STEM = False
# If True, perform separate positional embedding.
_C.MVIT.SEP_POS_EMBED = False
# Dropout rate for the MViT backbone.
_C.MVIT.DROPOUT_RATE = 0.0
# -----------------------------------------------------------------------------
# SlowFast options
# -----------------------------------------------------------------------------
_C.SLOWFAST = CfgNode()
# Corresponds to the inverse of the channel reduction ratio, $\beta$ between
# the Slow and Fast pathways.
_C.SLOWFAST.BETA_INV = 8
# Corresponds to the frame rate reduction ratio, $\alpha$ between the Slow and
# Fast pathways.
_C.SLOWFAST.ALPHA = 8
# Ratio of channel dimensions between the Slow and Fast pathways.
_C.SLOWFAST.FUSION_CONV_CHANNEL_RATIO = 2
# Kernel dimension used for fusing information from Fast pathway to Slow
# pathway.
_C.SLOWFAST.FUSION_KERNEL_SZ = 5
# -----------------------------------------------------------------------------
# Data options
# -----------------------------------------------------------------------------
_C.DATA = CfgNode()
# The path to the data directory.
_C.DATA.PATH_TO_DATA_DIR = ""
# The separator used between path and label.
_C.DATA.PATH_LABEL_SEPARATOR = " "
# Video path prefix if any.
_C.DATA.PATH_PREFIX = ""
# The number of frames of the input clip.
_C.DATA.NUM_FRAMES = 8
# The video sampling rate of the input clip.
_C.DATA.SAMPLING_RATE = 8
# Eigenvalues for PCA jittering. Note PCA is RGB based.
_C.DATA.TRAIN_PCA_EIGVAL = [0.225, 0.224, 0.229]
# Eigenvectors for PCA jittering.
_C.DATA.TRAIN_PCA_EIGVEC = [
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
]
# If a imdb have been dumpped to a local file with the following format:
# `{"im_path": im_path, "class": cont_id}`
# then we can skip the construction of imdb and load it from the local file.
_C.DATA.PATH_TO_PRELOAD_IMDB = ""
# The mean value of the video raw pixels across the R G B channels.
_C.DATA.MEAN = [0.45, 0.45, 0.45]
# List of input frame channel dimensions.
_C.DATA.INPUT_CHANNEL_NUM = [3, 3]
# The std value of the video raw pixels across the R G B channels.
_C.DATA.STD = [0.225, 0.225, 0.225]
# The spatial augmentation jitter scales for training.
_C.DATA.TRAIN_JITTER_SCALES = [256, 320]
# The relative scale range of Inception-style area based random resizing augmentation.
# If this is provided, DATA.TRAIN_JITTER_SCALES above is ignored.
_C.DATA.TRAIN_JITTER_SCALES_RELATIVE = []
# The relative aspect ratio range of Inception-style area based random resizing
# augmentation.
_C.DATA.TRAIN_JITTER_ASPECT_RELATIVE = []
# If True, perform stride length uniform temporal sampling.
_C.DATA.USE_OFFSET_SAMPLING = False
# Whether to apply motion shift for augmentation.
_C.DATA.TRAIN_JITTER_MOTION_SHIFT = False
# The spatial crop size for training.
_C.DATA.TRAIN_CROP_SIZE = 224
# The spatial crop size for testing.
_C.DATA.TEST_CROP_SIZE = 256
# Input videos may has different fps, convert it to the target video fps before
# frame sampling.
_C.DATA.TARGET_FPS = 30
# Decoding backend, options include `pyav` or `torchvision`
_C.DATA.DECODING_BACKEND = "pyav"
# if True, sample uniformly in [1 / max_scale, 1 / min_scale] and take a
# reciprocal to get the scale. If False, take a uniform sample from
# [min_scale, max_scale].
_C.DATA.INV_UNIFORM_SAMPLE = False
# If True, perform random horizontal flip on the video frames during training.
_C.DATA.RANDOM_FLIP = True
# If True, calculdate the map as metric.
_C.DATA.MULTI_LABEL = False
# Method to perform the ensemble, options include "sum" and "max".
_C.DATA.ENSEMBLE_METHOD = "sum"
# If True, revert the default input channel (RBG <-> BGR).
_C.DATA.REVERSE_INPUT_CHANNEL = False
# ---------------------------------------------------------------------------- #
# Optimizer options
# ---------------------------------------------------------------------------- #
_C.SOLVER = CfgNode()
# Base learning rate.
_C.SOLVER.BASE_LR = 0.1
# Learning rate policy (see utils/lr_policy.py for options and examples).
_C.SOLVER.LR_POLICY = "cosine"
# Final learning rates for 'cosine' policy.
_C.SOLVER.COSINE_END_LR = 0.0
# Exponential decay factor.
_C.SOLVER.GAMMA = 0.1
# Step size for 'exp' and 'cos' policies (in epochs).
_C.SOLVER.STEP_SIZE = 1
# Steps for 'steps_' policies (in epochs).
_C.SOLVER.STEPS = []
# Learning rates for 'steps_' policies.
_C.SOLVER.LRS = []
# Maximal number of epochs.
_C.SOLVER.MAX_EPOCH = 300
# Momentum.
_C.SOLVER.MOMENTUM = 0.9
# Momentum dampening.
_C.SOLVER.DAMPENING = 0.0
# Nesterov momentum.
_C.SOLVER.NESTEROV = True
# L2 regularization.
_C.SOLVER.WEIGHT_DECAY = 1e-4
# Start the warm up from SOLVER.BASE_LR * SOLVER.WARMUP_FACTOR.
_C.SOLVER.WARMUP_FACTOR = 0.1
# Gradually warm up the SOLVER.BASE_LR over this number of epochs.
_C.SOLVER.WARMUP_EPOCHS = 0.0
# The start learning rate of the warm up.
_C.SOLVER.WARMUP_START_LR = 0.01
# Optimization method.
_C.SOLVER.OPTIMIZING_METHOD = "sgd"
# Base learning rate is linearly scaled with NUM_SHARDS.
_C.SOLVER.BASE_LR_SCALE_NUM_SHARDS = False
# If True, start from the peak cosine learning rate after warm up.
_C.SOLVER.COSINE_AFTER_WARMUP = False
# If True, perform no weight decay on parameter with one dimension (bias term, etc).
_C.SOLVER.ZERO_WD_1D_PARAM = False
# Clip gradient at this value before optimizer update
_C.SOLVER.CLIP_GRAD_VAL = None
# Clip gradient at this norm before optimizer update
_C.SOLVER.CLIP_GRAD_L2NORM = None
# ---------------------------------------------------------------------------- #
# Misc options
# ---------------------------------------------------------------------------- #
# Number of GPUs to use (applies to both training and testing).
_C.NUM_GPUS = 1
# Number of machine to use for the job.
_C.NUM_SHARDS = 1
# The index of the current machine.
_C.SHARD_ID = 0
# Output basedir.
_C.OUTPUT_DIR = "./tmp"
# Note that non-determinism may still be present due to non-deterministic
# operator implementations in GPU operator libraries.
_C.RNG_SEED = 1
# Log period in iters.
_C.LOG_PERIOD = 10
# If True, log the model info.
_C.LOG_MODEL_INFO = True
# Distributed backend.
_C.DIST_BACKEND = "nccl"
# ---------------------------------------------------------------------------- #
# Benchmark options
# ---------------------------------------------------------------------------- #
_C.BENCHMARK = CfgNode()
# Number of epochs for data loading benchmark.
_C.BENCHMARK.NUM_EPOCHS = 5
# Log period in iters for data loading benchmark.
_C.BENCHMARK.LOG_PERIOD = 100
# If True, shuffle dataloader for epoch during benchmark.
_C.BENCHMARK.SHUFFLE = True
# ---------------------------------------------------------------------------- #
# Common train/test data loader options
# ---------------------------------------------------------------------------- #
_C.DATA_LOADER = CfgNode()
# Number of data loader workers per training process.
_C.DATA_LOADER.NUM_WORKERS = 8
# Load data to pinned host memory.
_C.DATA_LOADER.PIN_MEMORY = True
# Enable multi thread decoding.
_C.DATA_LOADER.ENABLE_MULTI_THREAD_DECODE = False
# ---------------------------------------------------------------------------- #
# Detection options.
# ---------------------------------------------------------------------------- #
_C.DETECTION = CfgNode()
# Whether enable video detection.
_C.DETECTION.ENABLE = False
# Aligned version of RoI. More details can be found at slowfast/models/head_helper.py
_C.DETECTION.ALIGNED = True
# Spatial scale factor.
_C.DETECTION.SPATIAL_SCALE_FACTOR = 16
# RoI tranformation resolution.
_C.DETECTION.ROI_XFORM_RESOLUTION = 7
# -----------------------------------------------------------------------------
# AVA Dataset options
# -----------------------------------------------------------------------------
_C.AVA = CfgNode()
# Directory path of frames.
_C.AVA.FRAME_DIR = "/mnt/fair-flash3-east/ava_trainval_frames.img/"
# Directory path for files of frame lists.
_C.AVA.FRAME_LIST_DIR = (
"/mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/"
)
# Directory path for annotation files.
_C.AVA.ANNOTATION_DIR = (
"/mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/"
)
# Filenames of training samples list files.
_C.AVA.TRAIN_LISTS = ["train.csv"]
# Filenames of test samples list files.
_C.AVA.TEST_LISTS = ["val.csv"]
# Filenames of box list files for training. Note that we assume files which
# contains predicted boxes will have a suffix "predicted_boxes" in the
# filename.
_C.AVA.TRAIN_GT_BOX_LISTS = ["ava_train_v2.2.csv"]
_C.AVA.TRAIN_PREDICT_BOX_LISTS = []
# Filenames of box list files for test.
_C.AVA.TEST_PREDICT_BOX_LISTS = ["ava_val_predicted_boxes.csv"]
# This option controls the score threshold for the predicted boxes to use.
_C.AVA.DETECTION_SCORE_THRESH = 0.9
# If use BGR as the format of input frames.
_C.AVA.BGR = False
# Training augmentation parameters
# Whether to use color augmentation method.
_C.AVA.TRAIN_USE_COLOR_AUGMENTATION = False
# Whether to only use PCA jitter augmentation when using color augmentation
# method (otherwise combine with color jitter method).
_C.AVA.TRAIN_PCA_JITTER_ONLY = True
# Whether to do horizontal flipping during test.
_C.AVA.TEST_FORCE_FLIP = False
# Whether to use full test set for validation split.
_C.AVA.FULL_TEST_ON_VAL = False
# The name of the file to the ava label map.
_C.AVA.LABEL_MAP_FILE = "ava_action_list_v2.2_for_activitynet_2019.pbtxt"
# The name of the file to the ava exclusion.
_C.AVA.EXCLUSION_FILE = "ava_val_excluded_timestamps_v2.2.csv"
# The name of the file to the ava groundtruth.
_C.AVA.GROUNDTRUTH_FILE = "ava_val_v2.2.csv"
# Backend to process image, includes `pytorch` and `cv2`.
_C.AVA.IMG_PROC_BACKEND = "cv2"
# ---------------------------------------------------------------------------- #
# Multigrid training options
# See https://arxiv.org/abs/1912.00998 for details about multigrid training.
# ---------------------------------------------------------------------------- #
_C.MULTIGRID = CfgNode()
# Multigrid training allows us to train for more epochs with fewer iterations.
# This hyperparameter specifies how many times more epochs to train.
# The default setting in paper trains for 1.5x more epochs than baseline.
_C.MULTIGRID.EPOCH_FACTOR = 1.5
# Enable short cycles.
_C.MULTIGRID.SHORT_CYCLE = False
# Short cycle additional spatial dimensions relative to the default crop size.
_C.MULTIGRID.SHORT_CYCLE_FACTORS = [0.5, 0.5 ** 0.5]
_C.MULTIGRID.LONG_CYCLE = False
# (Temporal, Spatial) dimensions relative to the default shape.
_C.MULTIGRID.LONG_CYCLE_FACTORS = [
(0.25, 0.5 ** 0.5),
(0.5, 0.5 ** 0.5),
(0.5, 1),
(1, 1),
]
# While a standard BN computes stats across all examples in a GPU,
# for multigrid training we fix the number of clips to compute BN stats on.
# See https://arxiv.org/abs/1912.00998 for details.
_C.MULTIGRID.BN_BASE_SIZE = 8
# Multigrid training epochs are not proportional to actual training time or
# computations, so _C.TRAIN.EVAL_PERIOD leads to too frequent or rare
# evaluation. We use a multigrid-specific rule to determine when to evaluate:
# This hyperparameter defines how many times to evaluate a model per long
# cycle shape.
_C.MULTIGRID.EVAL_FREQ = 3
# No need to specify; Set automatically and used as global variables.
_C.MULTIGRID.LONG_CYCLE_SAMPLING_RATE = 0
_C.MULTIGRID.DEFAULT_B = 0
_C.MULTIGRID.DEFAULT_T = 0
_C.MULTIGRID.DEFAULT_S = 0
# -----------------------------------------------------------------------------
# Tensorboard Visualization Options
# -----------------------------------------------------------------------------
_C.TENSORBOARD = CfgNode()
# Log to summary writer, this will automatically.
# log loss, lr and metrics during train/eval.
_C.TENSORBOARD.ENABLE = False
# Provide path to prediction results for visualization.
# This is a pickle file of [prediction_tensor, label_tensor]
_C.TENSORBOARD.PREDICTIONS_PATH = ""
# Path to directory for tensorboard logs.
# Default to to cfg.OUTPUT_DIR/runs-{cfg.TRAIN.DATASET}.
_C.TENSORBOARD.LOG_DIR = ""
# Path to a json file providing class_name - id mapping
# in the format {"class_name1": id1, "class_name2": id2, ...}.
# This file must be provided to enable plotting confusion matrix
# by a subset or parent categories.
_C.TENSORBOARD.CLASS_NAMES_PATH = ""
# Path to a json file for categories -> classes mapping
# in the format {"parent_class": ["child_class1", "child_class2",...], ...}.
_C.TENSORBOARD.CATEGORIES_PATH = ""
# Config for confusion matrices visualization.
_C.TENSORBOARD.CONFUSION_MATRIX = CfgNode()
# Visualize confusion matrix.
_C.TENSORBOARD.CONFUSION_MATRIX.ENABLE = False
# Figure size of the confusion matrices plotted.
_C.TENSORBOARD.CONFUSION_MATRIX.FIGSIZE = [8, 8]
# Path to a subset of categories to visualize.
# File contains class names separated by newline characters.
_C.TENSORBOARD.CONFUSION_MATRIX.SUBSET_PATH = ""
# Config for histogram visualization.
_C.TENSORBOARD.HISTOGRAM = CfgNode()
# Visualize histograms.
_C.TENSORBOARD.HISTOGRAM.ENABLE = False
# Path to a subset of classes to plot histograms.
# Class names must be separated by newline characters.
_C.TENSORBOARD.HISTOGRAM.SUBSET_PATH = ""
# Visualize top-k most predicted classes on histograms for each
# chosen true label.
_C.TENSORBOARD.HISTOGRAM.TOPK = 10
# Figure size of the histograms plotted.
_C.TENSORBOARD.HISTOGRAM.FIGSIZE = [8, 8]
# Config for layers' weights and activations visualization.
# _C.TENSORBOARD.ENABLE must be True.
_C.TENSORBOARD.MODEL_VIS = CfgNode()
# If False, skip model visualization.
_C.TENSORBOARD.MODEL_VIS.ENABLE = False
# If False, skip visualizing model weights.
_C.TENSORBOARD.MODEL_VIS.MODEL_WEIGHTS = False
# If False, skip visualizing model activations.
_C.TENSORBOARD.MODEL_VIS.ACTIVATIONS = False
# If False, skip visualizing input videos.
_C.TENSORBOARD.MODEL_VIS.INPUT_VIDEO = False
# List of strings containing data about layer names and their indexing to
# visualize weights and activations for. The indexing is meant for
# choosing a subset of activations outputed by a layer for visualization.
# If indexing is not specified, visualize all activations outputed by the layer.
# For each string, layer name and indexing is separated by whitespaces.
# e.g.: [layer1 1,2;1,2, layer2, layer3 150,151;3,4]; this means for each array `arr`
# along the batch dimension in `layer1`, we take arr[[1, 2], [1, 2]]
_C.TENSORBOARD.MODEL_VIS.LAYER_LIST = []
# Top-k predictions to plot on videos
_C.TENSORBOARD.MODEL_VIS.TOPK_PREDS = 1
# Colormap to for text boxes and bounding boxes colors
_C.TENSORBOARD.MODEL_VIS.COLORMAP = "Pastel2"
# Config for visualization video inputs with Grad-CAM.
# _C.TENSORBOARD.ENABLE must be True.
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM = CfgNode()
# Whether to run visualization using Grad-CAM technique.
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.ENABLE = True
# CNN layers to use for Grad-CAM. The number of layers must be equal to
# number of pathway(s).
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST = []
# If True, visualize Grad-CAM using true labels for each instances.
# If False, use the highest predicted class.
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.USE_TRUE_LABEL = False
# Colormap to for text boxes and bounding boxes colors
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.COLORMAP = "viridis"
# Config for visualization for wrong prediction visualization.
# _C.TENSORBOARD.ENABLE must be True.
_C.TENSORBOARD.WRONG_PRED_VIS = CfgNode()
_C.TENSORBOARD.WRONG_PRED_VIS.ENABLE = False
# Folder tag to origanize model eval videos under.
_C.TENSORBOARD.WRONG_PRED_VIS.TAG = "Incorrectly classified videos."
# Subset of labels to visualize. Only wrong predictions with true labels
# within this subset is visualized.
_C.TENSORBOARD.WRONG_PRED_VIS.SUBSET_PATH = ""
# ---------------------------------------------------------------------------- #
# Demo options
# ---------------------------------------------------------------------------- #
_C.DEMO = CfgNode()
# Run model in DEMO mode.
_C.DEMO.ENABLE = False
# Path to a json file providing class_name - id mapping
# in the format {"class_name1": id1, "class_name2": id2, ...}.
_C.DEMO.LABEL_FILE_PATH = ""
# Specify a camera device as input. This will be prioritized
# over input video if set.
# If -1, use input video instead.
_C.DEMO.WEBCAM = -1
# Path to input video for demo.
_C.DEMO.INPUT_VIDEO = ""
# Custom width for reading input video data.
_C.DEMO.DISPLAY_WIDTH = 0
# Custom height for reading input video data.
_C.DEMO.DISPLAY_HEIGHT = 0
# Path to Detectron2 object detection model configuration,
# only used for detection tasks.
_C.DEMO.DETECTRON2_CFG = "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"
# Path to Detectron2 object detection model pre-trained weights.
_C.DEMO.DETECTRON2_WEIGHTS = "detectron2://COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
# Threshold for choosing predicted bounding boxes by Detectron2.
_C.DEMO.DETECTRON2_THRESH = 0.9
# Number of overlapping frames between 2 consecutive clips.
# Increase this number for more frequent action predictions.
# The number of overlapping frames cannot be larger than
# half of the sequence length `cfg.DATA.NUM_FRAMES * cfg.DATA.SAMPLING_RATE`
_C.DEMO.BUFFER_SIZE = 0
# If specified, the visualized outputs will be written this a video file of
# this path. Otherwise, the visualized outputs will be displayed in a window.
_C.DEMO.OUTPUT_FILE = ""
# Frames per second rate for writing to output video file.
# If not set (-1), use fps rate from input file.
_C.DEMO.OUTPUT_FPS = -1
# Input format from demo video reader ("RGB" or "BGR").
_C.DEMO.INPUT_FORMAT = "BGR"
# Draw visualization frames in [keyframe_idx - CLIP_VIS_SIZE, keyframe_idx + CLIP_VIS_SIZE] inclusively.
_C.DEMO.CLIP_VIS_SIZE = 10
# Number of processes to run video visualizer.
_C.DEMO.NUM_VIS_INSTANCES = 2
# Path to pre-computed predicted boxes
_C.DEMO.PREDS_BOXES = ""
# Whether to run in with multi-threaded video reader.
_C.DEMO.THREAD_ENABLE = False
# Take one clip for every `DEMO.NUM_CLIPS_SKIP` + 1 for prediction and visualization.
# This is used for fast demo speed by reducing the prediction/visualiztion frequency.
# If -1, take the most recent read clip for visualization. This mode is only supported
# if `DEMO.THREAD_ENABLE` is set to True.
_C.DEMO.NUM_CLIPS_SKIP = 0
# Path to ground-truth boxes and labels (optional)
_C.DEMO.GT_BOXES = ""
# The starting second of the video w.r.t bounding boxes file.
_C.DEMO.STARTING_SECOND = 900
# Frames per second of the input video/folder of images.
_C.DEMO.FPS = 30
# Visualize with top-k predictions or predictions above certain threshold(s).
# Option: {"thres", "top-k"}
_C.DEMO.VIS_MODE = "thres"
# Threshold for common class names.
_C.DEMO.COMMON_CLASS_THRES = 0.7
# Theshold for uncommon class names. This will not be
# used if `_C.DEMO.COMMON_CLASS_NAMES` is empty.
_C.DEMO.UNCOMMON_CLASS_THRES = 0.3
# This is chosen based on distribution of examples in
# each classes in AVA dataset.
_C.DEMO.COMMON_CLASS_NAMES = [
"watch (a person)",
"talk to (e.g., self, a person, a group)",
"listen to (a person)",
"touch (an object)",
"carry/hold (an object)",
"walk",
"sit",
"lie/sleep",
"bend/bow (at the waist)",
]
# Slow-motion rate for the visualization. The visualized portions of the
# video will be played `_C.DEMO.SLOWMO` times slower than usual speed.
_C.DEMO.SLOWMO = 1
# Add custom config with default values.
custom_config.add_custom_config(_C)
def assert_and_infer_cfg(cfg):
# BN assertions.
if cfg.BN.USE_PRECISE_STATS:
assert cfg.BN.NUM_BATCHES_PRECISE >= 0
# TRAIN assertions.
assert cfg.TRAIN.CHECKPOINT_TYPE in ["pytorch", "caffe2"]
assert cfg.NUM_GPUS == 0 or cfg.TRAIN.BATCH_SIZE % cfg.NUM_GPUS == 0
# TEST assertions.
assert cfg.TEST.CHECKPOINT_TYPE in ["pytorch", "caffe2"]
assert cfg.NUM_GPUS == 0 or cfg.TEST.BATCH_SIZE % cfg.NUM_GPUS == 0
# RESNET assertions.
assert cfg.RESNET.NUM_GROUPS > 0
assert cfg.RESNET.WIDTH_PER_GROUP > 0
assert cfg.RESNET.WIDTH_PER_GROUP % cfg.RESNET.NUM_GROUPS == 0
# Execute LR scaling by num_shards.
if cfg.SOLVER.BASE_LR_SCALE_NUM_SHARDS:
cfg.SOLVER.BASE_LR *= cfg.NUM_SHARDS
cfg.SOLVER.WARMUP_START_LR *= cfg.NUM_SHARDS
cfg.SOLVER.COSINE_END_LR *= cfg.NUM_SHARDS
# General assertions.
assert cfg.SHARD_ID < cfg.NUM_SHARDS
return cfg
def get_cfg():
"""
Get a copy of the default config.
"""
return _C.clone()