-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDirectTrain3.py
74 lines (60 loc) · 2.85 KB
/
DirectTrain3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import face_recognition
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
import pickle
from tqdm import tqdm
# Set path to the directory containing your dataset
dataset_path = "./cleanedDataset"
# Define paths to save embeddings and labels
embeddings_path = './data/embeddings.npy'
labels_path = './data/labels.npy'
# Check if the saved files exist
if os.path.exists(embeddings_path) and os.path.exists(labels_path):
# Load embeddings and labels if the files exist
embeddings = np.load(embeddings_path)
labels = np.load(labels_path)
else:
# Create empty lists to store the embeddings and corresponding labels
embeddings = []
labels = []
# Iterate over the friend folders
for friend_folder in os.listdir(dataset_path):
friend_path = os.path.join(dataset_path, friend_folder)
if os.path.isdir(friend_path):
for filename in tqdm(os.listdir(friend_path), desc=f"Processing {friend_folder}"):
img_path = os.path.join(friend_path, filename)
# Load the image and find face locations and embeddings
image = face_recognition.load_image_file(img_path)
face_locations = face_recognition.face_locations(image)
# Use the first face found (you can modify this logic based on your requirements)
if face_locations:
face_encoding = face_recognition.face_encodings(image, known_face_locations=[face_locations[0]])[0]
# Append the embedding and label to the lists
embeddings.append(face_encoding)
labels.append(friend_folder)
# Convert lists to numpy arrays
embeddings = np.array(embeddings)
labels = np.array(labels)
# Save embeddings and labels
np.save(embeddings_path, embeddings)
np.save(labels_path, labels)
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(embeddings, labels, test_size=0.2, random_state=42)
# Train a K-Nearest Neighbors (KNN) Classifier
knn_classifier = KNeighborsClassifier(n_neighbors=10)
knn_classifier.fit(X_train, y_train)
# Evaluate the model on the test set
y_pred = knn_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Test accuracy: {accuracy}')
# Save the trained model using pickle
with open('./Models/model12 knn/friend_face_recognition_model.pkl', 'wb') as model_file:
pickle.dump(knn_classifier, model_file)
# Save the label encoder classes for later use during inference
label_encoder = LabelEncoder()
label_encoder.fit(y_train)
np.save('./Models/model12 knn/label_encoder_classes.npy', label_encoder.classes_)