-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgym_pickplace.py
984 lines (919 loc) · 40 KB
/
gym_pickplace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
"""
Run script for a pick and place Gym environment featuring a Fetch robot.
Can be used to collect expert trajectories, replay recorded trajectories or
run and evaluate a controller.
Example calls:
* Simulation of expert trajectories with onscreen rendering:
LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libGLEW.so" python3 gym_pickplace.py \
--rendering_mode viewer
* Simulation of expert trajectories with video rendering:
python3 gym_pickplace.py \
--rendering_mode video
* Running a controller:
python3 gym_pickplace.py \
--shapes pad1-cube1 \
--sim_mode controller \
--model_dir ../models/geeco-f/pick11 \
--goal_condition none \
--rendering_mode video \
--debug
"""
import argparse
import os
import pickle
import csv
import json
import gym
from gym.envs.registration import register
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
from PIL import Image
from tqdm import tqdm
from data.geeco_gym import load_target_frame
from mj_engine.engine.recorder import MjVideoRecorder
from models.e2evmc.predictor import E2EVMCPredictor, GoalE2EVMCPredictor
from utils.runscript import save_run_command
#region: CLI arguments
ARGPARSER = argparse.ArgumentParser(
description='Collect data for a simple block stacking task with a Fetch robot in a\
gym environment.')
ARGPARSER.add_argument(
'--wrk_dir', type=str, default='../logs/gym_pickplace',
help="The path to the working directory for this run (where logs, videos \
etc. will be stored).")
ARGPARSER.add_argument(
'--shapes', type=str, default='pad2-cube2',
help="The shape set used for stacking. \
Available: pad1-cube1 | pad2-cube1 | pad1-cube2 | pad2-cube2 | \
pad2-cube2-clutter4 | pad2-cube2-clutter12 | \
ball-cup | bridge-pad | diamond-pad | nut-cone")
ARGPARSER.add_argument(
'--sim_mode', type=str, default='collect',
help="The simulation mode to use: \
collect = collect expert data \
replay = replay from control buffer \
random = random freestyle control \
controller = run with controller")
ARGPARSER.add_argument(
'--max_episode_steps', type=int, default=-1,
help="Max. simulation steps in one episode. If < 0, use defaults.")
ARGPARSER.add_argument(
'--dry_run', default=False, action='store_true',
help="Saves images of initial configurations without running the simulation. \
Only effective in 'collect' mode.")
ARGPARSER.add_argument(
'--init_states', type=str, default='',
help="The path to a CSV file containing initial qpos of objects.")
# --- data collection options
ARGPARSER.add_argument(
'--start_idx', type=int, default=0,
help="Index of the first record to be collected.")
ARGPARSER.add_argument(
'--end_idx', type=int, default=100,
help="Index of the last record to be collected.")
# --- replay options
ARGPARSER.add_argument(
'--replay_buffer', type=str, default='../data/gym-pick-pad2-cube2-v4/data/replay_buffer_0001.pkl',
help="The path to the buffer file to be replayed. Only used with --sim_mode=replay.")
# --- control options
ARGPARSER.add_argument( # determines which controller to use
'--controller', type=str, default='e2evmc',
help="Controller model to use. Options are: e2evmc. \
e2evmc = E2E visuomotor control (reflex), works in all goal_conditon modes")
ARGPARSER.add_argument( # determines which predictor mode to use
'--goal_condition', type=str, default='none',
help="Conditioning mode of the reflex. Options are: none | target | inter_targets. \
none = no goal provided, unconditional reflex \
target = target image provided, conditional reflex \
inter_targets = intermediate target images provided, conditional reflex")
ARGPARSER.add_argument(
'--model_dir', type=str, default='../models/geeco-f/pick11',
help="Directory from where the controller model is loaded.")
ARGPARSER.add_argument(
'--checkpoint_name', type=str, default=None,
help="Specific checkpoint to load. If none, load latest in model_dir.")
ARGPARSER.add_argument(
'--dataset_dir', type=str, default='../data/gym-pick-pad2-cube2-v4/',
help="Dataset from which evaluation data is loaded.")
ARGPARSER.add_argument(
'--tfrecord_list', type=str, default='',
help="The path to txt file containing tfrecords to be evaluated on.")
# --- randomization options
ARGPARSER.add_argument(
'--background_video', type=str, default='',
help="The path to the distractor video to be looped in the background. If empty, no video is used.")
# --- rendering options
ARGPARSER.add_argument(
'--rendering_mode', type=str, default='viewer',
help="The rendering mode to use: viewer | video | tfrecord")
ARGPARSER.add_argument(
'--frame_res', type=int, nargs=2, default=[256, 256],
help="Resolution of the recorded camera frames as (width, height).")
ARGPARSER.add_argument(
'--observation_format', type=str, default='rgb',
help='Observation data to be used (sets img_channels): rgb | rgbd. \
Only effective in `controller` mode.')
# --- debug options
ARGPARSER.add_argument(
'--debug', default=False, action='store_true',
help="Enables debug output.")
#endregion
#region: constants
NAME_GRIPPER = 'robot0:grip'
NAME_TABLE = 'table0'
OFFSET_HEIGHT_PRE_GRASP = 0.05 # gripper offset above target object
DIST_PRE_GRASP = 0.005 # distance to target object for pre-grasp pose
DIST_GRASP = 0.002 # distance to target object for grasp pose (defines firmness of grip)
DIST_ON_TOP = 0.175 # distance for placement position on top of a target
DIST_GOAL = 0.01 # radius around goal pos, positions within are considered 'in goal'
SIZE_BOX = 0.05 # side-length of a box
MULT_POS_ACTION = 6.0 # multiplier for pos action (for faster movement to target pos)
TOL_GRIPPER_RELEASE = 0.0001 # tolerance between gripper state and full open (for release)
PAUSE_AFTER_DROP = 10 # number of simulation steps for the robot to sit idle after placing an object (to let the stack settle)
CMD_GRIPPER_OPEN = 1.0
CMD_GRIPPER_CLOSE = -1.0
CMD_GRIPPER_NOOP = 0.0
GOAL_NAMES = { # env_name -> [goal_name]
'pad1-cube1' : ['goal0'],
'pad2-cube1' : ['goal0', 'goal1'],
'pad1-cube2' : ['goal0'],
'pad2-cube2' : ['goal0', 'goal1'],
'pad2-cube2-clutter4' : ['goal0', 'goal1'],
'pad2-cube2-clutter12' : ['goal0', 'goal1'],
# generalization scenarios
'ball-cup' : ['goal0', 'goal1'],
'bridge-pad' : ['goal0', 'goal1'],
'diamond-pad' : ['goal0', 'goal1'],
'nut-cone' : ['goal0', 'goal1'],
}
CUBE_NAMES = { # env_name -> [cube_name]
'pad1-cube1' : ['object0'],
'pad2-cube1' : ['object0'],
'pad1-cube2' : ['object0', 'object1'],
'pad2-cube2' : ['object0', 'object1'],
'pad2-cube2-clutter4' : ['object0', 'object1'],
'pad2-cube2-clutter12' : ['object0', 'object1'],
# generalization scenarios
'ball-cup' : ['goal0', 'goal1'],
'bridge-pad' : ['goal0', 'goal1'],
'diamond-pad' : ['goal0', 'goal1'],
'nut-cone' : ['goal0', 'goal1'],
}
#endregion
#region: I/O helper
def _load_reset_queue_v2(env, reset_states_path, start_idx, end_idx):
with open(reset_states_path) as fp:
reader = csv.reader(fp, delimiter=';')
iterator = iter(reader)
# parse CSV header: extract joint names
header_row = next(iterator)
state_header = header_row[:-2] # last two fields are task_goal & task_object
task_header = header_row[-2:]
num_joints = len(state_header) // 7
joint_names = [state_header[i * 7].split('::')[0] for i in range(num_joints)]
for i in range(0, end_idx):
try:
row = next(iterator)
except StopIteration:
break
if i < start_idx:
continue
# each parsed row is one init state and task definition
state_row = row[:-2]
task_row = row[-2:]
state_row = [float(e) for e in state_row]
qpos_list = np.split(np.array(state_row), num_joints)
state_dict = dict(list(zip(joint_names[:-1], qpos_list[:-1])))
robot_dict = dict([(joint_names[-1], qpos_list[-1])])
task_dict = {
'goal' : task_row[0].split(','),
'object' : task_row[1].split(','),
}
reset_state = {
'init' : state_dict,
'task' : task_dict,
'robot' : robot_dict,
}
env.enqueue_reset_state(reset_state)
def _load_reset_queue_v3(env, reset_states_path, tfrecord_list_path, dataset_dir, start_idx, end_idx):
"""Row in reset state CSV and lines in tfrecord list file must be aligned!"""
with open(reset_states_path) as fp:
reader = csv.reader(fp, delimiter=';')
state_iterator = iter(reader)
# parse CSV header: extract joint names
header_row = next(state_iterator)
state_header = header_row[:-2] # last two fields are task_goal & task_object
task_header = header_row[-2:]
num_joints = len(state_header) // 7
joint_names = [state_header[i * 7].split('::')[0] for i in range(num_joints)]
# load tfrecord list
with open(tfrecord_list_path) as fp2:
tfrecord_list = fp2.read().split('\n')[:-1]
record_iterator = iter(tfrecord_list)
# only load tfrecords that are needed
for i in range(0, end_idx):
try:
row = next(state_iterator)
record_name = next(record_iterator)
except StopIteration:
break
if i < start_idx:
continue
# each parsed row is one init state and task definition
state_row = row[:-2]
task_row = row[-2:]
state_row = [float(e) for e in state_row]
qpos_list = np.split(np.array(state_row), num_joints)
state_dict = dict(list(zip(joint_names[:-1], qpos_list[:-1])))
robot_dict = dict([(joint_names[-1], qpos_list[-1])])
task_dict = {
'goal' : task_row[0].split(','),
'object' : task_row[1].split(','),
}
reset_state = {
'init' : state_dict,
'task' : task_dict,
'target' : [load_target_frame(dataset_dir, record_name, load_depth=False)], # HOTFIX: disabled depth!
'robot' : robot_dict,
}
env.enqueue_reset_state(reset_state)
def _animate_trajectories(traj_ee, traj_obj, pred_traj_ee, pred_traj_obj):
"""
traj_ee: gray
traj_obj: red
pred_traj_ee: blue
pred_traj_obj: yellow
"""
# reshape trajectory tensors
traj_ee = np.stack(traj_ee) # [t, xyz]
traj_obj = np.stack(traj_obj) # [t, xyz]
pred_traj_ee = np.stack(pred_traj_ee) # [t, xyz]
pred_traj_obj = np.stack(pred_traj_obj) # [t, xyz]
# determine sequence length
seq_length = np.min([
traj_ee.shape[0], traj_obj.shape[0], pred_traj_ee.shape[0], pred_traj_obj.shape[0]
])
# create figure and set limits
fig = plt.figure()
ax = plt.axes(projection='3d')
x_data = np.concatenate([
traj_ee[:, 0], traj_obj[:, 0], pred_traj_ee[:, 0], pred_traj_obj[:, 0]
])
y_data = np.concatenate([
traj_ee[:, 1], traj_obj[:, 1], pred_traj_ee[:, 1], pred_traj_obj[:, 1]
])
z_data = np.concatenate([
traj_ee[:, 2], traj_obj[:, 2], pred_traj_ee[:, 2], pred_traj_obj[:, 2]
])
ax.set_xlim(left=np.min(x_data), right=np.max(x_data))
ax.set_ylim(bottom=np.min(y_data), top=np.max(y_data))
ax.set_zlim(bottom=np.min(z_data), top=np.max(z_data))
# internal anim func
def _init():
_traj_ee, = ax.plot3D([traj_ee[0, 0]], [traj_ee[0, 1]], [traj_ee[0, 2]], 'black')
_traj_obj, = ax.plot3D([traj_obj[0, 0]], [traj_obj[0, 1]], [traj_obj[0, 2]], 'green')
_pred_traj_ee, = ax.plot3D([pred_traj_ee[0, 0]], [pred_traj_ee[0, 1]], [pred_traj_ee[0, 2]], 'blue')
_pred_traj_obj, = ax.plot3D([pred_traj_obj[0, 0]], [pred_traj_obj[0, 1]], [pred_traj_obj[0, 2]], 'red')
return _traj_ee, _traj_obj, _pred_traj_ee, _pred_traj_obj
def _animate(i):
_traj_ee, = ax.plot3D(traj_ee[0:i, 0], traj_ee[0:i, 1], traj_ee[0:i, 2], 'black')
_traj_obj, = ax.plot3D(traj_obj[0:i, 0], traj_obj[0:i, 1], traj_obj[0:i, 2], 'green')
_pred_traj_ee, = ax.plot3D(pred_traj_ee[0:i, 0], pred_traj_ee[0:i, 1], pred_traj_ee[0:i, 2], 'blue')
_pred_traj_obj, = ax.plot3D(pred_traj_obj[0:i, 0], pred_traj_obj[0:i, 1], pred_traj_obj[0:i, 2], 'red')
return _traj_ee, _traj_obj, _pred_traj_ee, _pred_traj_obj
# build animation
ani = animation.FuncAnimation( # interval: 40 ms = 25 Hz
fig, _animate, init_func=_init, interval=40, blit=True, save_count=seq_length)
return ani
def _animate_commands(cmd_ee, cmd_grp):
"""stub"""
# reshape trajectory tensors
cmd_ee = np.stack(cmd_ee) # [t, Dxyz]
cmd_grp = np.array(cmd_grp) # [t, 1]
# determine sequence length
seq_length = np.min([cmd_ee.shape[0], cmd_grp.shape[0]])
# create figure and set limits
fig, (ax_cmd_dx, ax_cmd_dy, ax_cmd_dz, ax_cmd_grp) = plt.subplots(nrows=4, ncols=1, sharex=True)
cmd_ee_range = np.max(cmd_ee) - np.min(cmd_ee)
for ax in [ax_cmd_dx, ax_cmd_dy, ax_cmd_dz]:
ax.set_xlim(left=0, right=seq_length)
# ax.set_ylim(bottom=np.min(cmd_ee)-0.1*cmd_ee_range, top=np.max(cmd_ee)+0.1*cmd_ee_range)
ax.set_ylim(bottom=-2.0, top=2.0)
ax_cmd_grp.set_xlim(left=0, right=seq_length)
ax_cmd_grp.set_ylim(bottom=-1.5, top=1.5)
# internal anim func
def _init():
_cmd_dx, = ax_cmd_dx.plot([0], [cmd_ee[0, 0]], color='orange')
_cmd_dy, = ax_cmd_dy.plot([0], [cmd_ee[0, 1]], color='orange')
_cmd_dz, = ax_cmd_dz.plot([0], [cmd_ee[0, 2]], color='orange')
_cmd_grp, = ax_cmd_grp.plot([0], [cmd_grp[0, 0]], color='orange')
return _cmd_dx, _cmd_dy, _cmd_dz, _cmd_grp
def _animate(i):
_cmd_dx, = ax_cmd_dx.plot(np.arange(0, i), cmd_ee[0:i, 0], color='orange')
_cmd_dy, = ax_cmd_dy.plot(np.arange(0, i), cmd_ee[0:i, 1], color='orange')
_cmd_dz, = ax_cmd_dz.plot(np.arange(0, i), cmd_ee[0:i, 2], color='orange')
_cmd_grp, = ax_cmd_grp.plot(np.arange(0, i), cmd_grp[0:i, 0], color='orange')
return _cmd_dx, _cmd_dy, _cmd_dz, _cmd_grp
# build animation
ani = animation.FuncAnimation( # interval: 40 ms = 25 Hz
fig, _animate, init_func=_init, interval=40, blit=True, save_count=seq_length)
return ani
from moviepy.editor import VideoFileClip
class VideoCycler:
def __init__(self, video_path):
"""Loads the video from `video_path` and cycles it using a memory-economic generator."""
self.video = VideoFileClip(video_path)
self.reset()
def reset(self):
self.ite = self.video.iter_frames()
def __next__(self):
try:
next_frame = next(self.ite)
except StopIteration:
self.reset()
next_frame = next(self.ite)
return next_frame
def __iter__(self):
return self
#endregion
#region: sub-routines for expert trajectory collection
def _move_to_pre_grasp(env, obj_name: str):
"""Move gripper into pre-grasp pose for object."""
# initial positions
grip_pos = env.sim.data.get_site_xpos(NAME_GRIPPER)
object_pos = env.sim.data.get_site_xpos(obj_name)
object_rel_pos = object_pos - grip_pos
# first make the gripper go slightly above the object
object_oriented_goal = object_rel_pos.copy()
object_oriented_goal[2] += OFFSET_HEIGHT_PRE_GRASP
# set goal
env.sample_goal(object_oriented_goal)
# movement loop
while np.linalg.norm(object_oriented_goal) >= DIST_PRE_GRASP \
and env.ts < env._max_episode_steps:
env.render_extended()
object_oriented_goal = object_rel_pos.copy()
object_oriented_goal[2] += OFFSET_HEIGHT_PRE_GRASP
# adjust action
action = [0, 0, 0, 0]
for i in range(len(object_oriented_goal)):
action[i] = object_oriented_goal[i] * MULT_POS_ACTION
action[-1] = CMD_GRIPPER_OPEN
# forward environment
obs, reward, done, info = env.step(action)
# re-compute positions
grip_pos = env.sim.data.get_site_xpos(NAME_GRIPPER)
object_pos = env.sim.data.get_site_xpos(obj_name)
object_rel_pos = object_pos - grip_pos
return True # pre-grasp pose reached
def _grasp(env, obj_name: str):
"""Grasp object."""
# initial positions
grip_pos = env.sim.data.get_site_xpos(NAME_GRIPPER)
object_pos = env.sim.data.get_site_xpos(obj_name)
object_rel_pos = object_pos - grip_pos
# movement loop
while np.linalg.norm(object_rel_pos) >= DIST_GRASP \
and env.ts < env._max_episode_steps:
env.render_extended()
# adjust action
action = [0, 0, 0, 0]
for i in range(len(object_rel_pos)):
action[i] = object_rel_pos[i] * MULT_POS_ACTION
action[-1] = CMD_GRIPPER_CLOSE
# forward environment
obs, reward, done, info = env.step(action)
# re-compute positions
grip_pos = env.sim.data.get_site_xpos(NAME_GRIPPER)
object_pos = env.sim.data.get_site_xpos(obj_name)
object_rel_pos = object_pos - grip_pos
return True # object has been grasped
def _move_to_post_grasp(env, obj_name: str):
"""Move gripper into post-grasp pose for object."""
# initial positions
grip_pos = env.sim.data.get_site_xpos(NAME_GRIPPER)
goal_grip_pos = grip_pos.copy()
goal_grip_pos[2] += OFFSET_HEIGHT_PRE_GRASP
# set goal
env.sample_goal(goal_grip_pos)
# first make the gripper go slightly above the object
diff_grip_pos = goal_grip_pos - grip_pos
# movement loop
while np.linalg.norm(diff_grip_pos) >= DIST_PRE_GRASP \
and env.ts < env._max_episode_steps:
env.render_extended()
# adjust action
action = [0, 0, 0, 0]
for i in range(len(diff_grip_pos)):
action[i] = diff_grip_pos[i] * MULT_POS_ACTION
action[-1] = CMD_GRIPPER_CLOSE
# forward environment
obs, reward, done, info = env.step(action)
# re-compute positions
grip_pos = env.sim.data.get_site_xpos(NAME_GRIPPER)
diff_grip_pos = goal_grip_pos - grip_pos
return True # post-grasp pose reached
def _move(env, obj_name: str, goal_pos):
"""Move object to a goal position. Object needs to be grasped first!"""
# initial positions
grip_pos = env.sim.data.get_site_xpos(NAME_GRIPPER)
object_pos = env.sim.data.get_site_xpos(obj_name)
object_rel_pos = object_pos - grip_pos
# set goal
env.sample_goal(goal_pos)
# movement loop
while np.linalg.norm(goal_pos - object_pos) >= DIST_GOAL \
and env.ts < env._max_episode_steps:
env.render_extended()
# adjust action
action = [0, 0, 0, 0]
for i in range(len(goal_pos - object_pos)):
action[i] = (goal_pos - object_pos)[i] * MULT_POS_ACTION
action[-1] = CMD_GRIPPER_CLOSE
# forward environment
obs, reward, done, info = env.step(action)
# re-compute positions
grip_pos = env.sim.data.get_site_xpos(NAME_GRIPPER)
object_pos = env.sim.data.get_site_xpos(obj_name)
object_rel_pos = object_pos - grip_pos
return True # object has been moved to goal position
def _drop(env, obj_name: str):
"""Open gripper and drop object."""
gripper_open = np.array([CMD_GRIPPER_OPEN, CMD_GRIPPER_OPEN])
gripper_act = np.array([ # only gripper in ctrl array, remaining arm pose is set via mocap array
env.sim.data.get_joint_qpos('robot0:l_gripper_finger_joint'),
env.sim.data.get_joint_qpos('robot0:r_gripper_finger_joint'),
])
# movement loop
while np.linalg.norm(gripper_act - gripper_open) >= TOL_GRIPPER_RELEASE \
and env.ts < env._max_episode_steps:
env.render_extended()
# adjust action
# xpos_grp = env.sim.data.get_site_xpos('robot0:grip')
action = [0, 0, OFFSET_HEIGHT_PRE_GRASP / 2, CMD_GRIPPER_OPEN]
# forward environment
obs, reward, done, info = env.step(action)
# re-compute positions
gripper_act = np.array([
env.sim.data.get_joint_qpos('robot0:l_gripper_finger_joint'),
env.sim.data.get_joint_qpos('robot0:r_gripper_finger_joint'),
])
return True # gripper is fully open and has released object
def _idle(env, idle_steps):
"""Lets the robot sit idle for a number of steps."""
step_cnt = 0
while step_cnt < idle_steps \
and env.ts < env._max_episode_steps:
env.render_extended()
action = [0, 0, 0, 0]
obs, reward, done, info = env.step(action)
step_cnt += 1
return
def _on_top(env, obj_top: str, obj_bottom: str):
"""Computes a goal position for `obj_top` on top of `obj_bottom`."""
xpos_bottom = env.sim.data.get_site_xpos(obj_bottom)
xpos_top = xpos_bottom.copy()
xpos_top[2] += DIST_ON_TOP
return xpos_top
def _get_obj_heights(env):
"""Returns the names and heights (site_xpos) of all objects, sorted desc."""
obj_names = [n for n in env.sim.model.site_names \
if n.startswith('object') or n.startswith('goal')] # TODO: use regex here!
obj_heights = [env.sim.data.get_site_xpos(obj_name)[2] for obj_name in obj_names]
result = list(zip(obj_names, obj_heights))
result.sort(key=lambda t: t[1])
result.reverse()
return result
# NOTE: hard-coded for box towers!
def _get_stack_height(env):
"""Returns the height of the highest stack."""
offset_table = env.sim.data.get_body_xpos(NAME_TABLE)[2] * 2 # body center is at half-height
_obj, _h = _get_obj_heights(env)[0] # get highest object site xpos
# TODO: make box half-heights constant
max_height = _h + SIZE_BOX / 2
print(max_height, offset_table)
num_stacked = (max_height - offset_table) / SIZE_BOX
return num_stacked
def _stack(env, obj_names, goal_name):
num_waypoints = 1 # TODO: compute more waypoints for collision-free trajectory
obj_moved = [] # keep track of the objects which have already been moved
# set goals
obj_moved.append(goal_name)
for obj_idx, obj_name in enumerate(obj_names):
_move_to_pre_grasp(env, obj_name)
_grasp(env, obj_name)
_move_to_post_grasp(env, obj_name)
for i in range(num_waypoints):
# move object on top of currently highest one
obj_by_height = _get_obj_heights(env)
for _obj, _h in obj_by_height:
if _obj in obj_moved: # ensure that bottom object has already been moved!
obj_bottom, cur_h = _obj, _h
break
goal = _on_top(env, obj_name, obj_bottom)
_move(env, obj_name, goal)
_drop(env, obj_name)
obj_moved.append(obj_name)
_idle(env, PAUSE_AFTER_DROP)
stack_height = int(np.rint(_get_stack_height(env)))
print(">> Current stack height", stack_height)
while env.ts < env._max_episode_steps:
env.render_extended()
action = [0, 0, 0, 0]
obs, reward, done, info = env.step(action)
stack_height = int(np.rint(_get_stack_height(env))) # TODO: save
print(">> Final stack height", stack_height)
#endregion
#region: sub-routines for controller evaluation
# TODO: refactor into application constants / make parameter
OBJ_VICINITY = 0.0625 # radius around manipulated object; determines vicinity test
GRASP_VICINITY = 0.025 # distance between gripper and manipulated object; determines grasp test
GOAL_VICINITY = 0.05 # radius around goal object; determines task success test
def _eval_object_vicinity(env, obj_name: str):
"""Checks whether the gripper has come close enough to the object."""
grip_pos = env.sim.data.get_site_xpos(NAME_GRIPPER)
object_pos = env.sim.data.get_site_xpos(obj_name)
dist = np.linalg.norm(object_pos - grip_pos)
return dist <= OBJ_VICINITY
def _eval_grasp_success(env, obj_name: str):
"""Checks whether the gripper has grasped the object."""
grip_pos = env.sim.data.get_site_xpos(NAME_GRIPPER)
object_pos = env.sim.data.get_site_xpos(obj_name)
dist = np.linalg.norm(object_pos - grip_pos)
return dist <= GRASP_VICINITY
def _eval_task_success(env, obj_name: str, goal_name: str):
"""Checks whether the manipulated object is near the goal."""
object_pos = env.sim.data.get_site_xpos(obj_name)
goal_pos = env.sim.data.get_site_xpos(goal_name)
dist = np.linalg.norm(goal_pos - object_pos)
return dist <= GOAL_VICINITY
def _eval_goal_dist(env, obj_name: str, goal_name: str):
"""Returns the distance of the manipulated object to the goal."""
object_pos = env.sim.data.get_site_xpos(obj_name)
goal_pos = env.sim.data.get_site_xpos(goal_name)
dist = np.linalg.norm(goal_pos - object_pos)
return dist
# endregion
#region: main
def main(args):
# --- set up directories
wrk_dir = os.path.join(args.wrk_dir, args.sim_mode)
os.makedirs(wrk_dir, exist_ok=True)
run_cmd_path = save_run_command(argparser=ARGPARSER, run_dir=wrk_dir)
# --- environment registration
for reward_type in ['sparse', 'dense']:
suffix = 'Dense' if reward_type == 'dense' else ''
kwargs = {
'work_dir' : wrk_dir,
'shapes' : args.shapes,
'reward_type' : reward_type,
'rendering_mode' : args.rendering_mode,
'frame_res' : tuple(args.frame_res),
}
if args.sim_mode == 'controller': # max_episode_steps depend
if args.max_episode_steps < 0: # use defaults
max_episode_steps = 200 # normal controller execution (2x expert demonstration time)
else:
max_episode_steps = args.max_episode_steps
else:
max_episode_steps = 100 # time for expert demonstration
register(
id='PickAndPlaceEnv{}-v1'.format(suffix),
entry_point='geeco_gym:PickAndPlaceEnv',
kwargs=kwargs,
max_episode_steps=max_episode_steps,
)
# --- build gym environment
env = gym.make('PickAndPlaceEnv-v1')
env.reset()
print("Initial environment reset done.")
# --- constants
goal_names = GOAL_NAMES[args.shapes]
cube_names = CUBE_NAMES[args.shapes]
# --- queue up intial environment configurations
if os.path.isfile(args.init_states):
if args.sim_mode == 'collect':
_load_reset_queue_v2(env, args.init_states, args.start_idx, args.end_idx)
elif args.sim_mode == 'controller':
if args.goal_condition == 'none':
_load_reset_queue_v2(env, args.init_states, args.start_idx, args.end_idx)
elif args.goal_condition == 'target':
_load_reset_queue_v3(
env, args.init_states, args.tfrecord_list, args.dataset_dir, args.start_idx, args.end_idx)
else:
err_msg = ">>> Couldn't load initial states from %s! Defaulting to random initialization." \
% (args.init_states, )
print(err_msg)
# --- set up domain randomization
randomize_background = False
if args.background_video != '':
randomize_background = True
bg_video_cycler = VideoCycler(args.background_video)
from mujoco_py.modder import TextureModder
texmodder = TextureModder(env.sim)
# --- set up predictor from model_dir
if args.sim_mode == 'controller':
# E2EVMC
if args.controller == 'e2evmc':
if args.goal_condition == 'none':
predictor = E2EVMCPredictor(args.model_dir, args.checkpoint_name)
elif args.goal_condition == 'target':
predictor = GoalE2EVMCPredictor(args.model_dir, args.checkpoint_name)
else:
err_msg = "Unknown goal condition: %s!" % (args.goal_condition, )
raise ValueError(err_msg)
else:
err_msg = "Unknown controller model '%s'" % (args.controller, )
raise ValueError(err_msg)
# --- register video recorders
recorders = {}
recorders['rgb'] = MjVideoRecorder( # TODO: set parameters via config
ctx_name='default', ctx_type='rgb', cam_name='cam_default',
record_name='observation', record_dir=wrk_dir,
res_height=256, res_width=256)
if args.debug:
if predictor.cfg.proc_obs == 'dynimg': # register recorder for dynamic buffer
recorders['dynbuff'] = MjVideoRecorder( # TODO: set parameters via config
ctx_name='default', ctx_type='rgb', cam_name='cam_default',
record_name='dynbuff', record_dir=wrk_dir,
res_height=256, res_width=256)
if predictor.cfg.proc_tgt == 'dyndiff': # register recorder for dynamic buffer
recorders['dyndiff'] = MjVideoRecorder( # TODO: set parameters via config
ctx_name='default', ctx_type='rgb', cam_name='cam_default',
record_name='dyndiff', record_dir=wrk_dir,
res_height=256, res_width=256)
# --- set up evaluation data structures
if args.sim_mode == 'controller':
eval_results = []
episode_eval_spec = [
('episode_id', 0),
('obj_vicinity', 0), # binary success indicator
('grasp_success', 0), # binary success indicator
('task_success', 0), # binary success indicator
('init_goal_dist', 0), # set at start of episode
('min_goal_dist', 1000), # updated via min operator
('max_goal_dist', 0), # updated via max operator
('final_goal_dist', 0), # set at end of episode
('video_file', ''), # path to video file
]
eval_spec_fields = [t[0] for t in episode_eval_spec]
report_path = os.path.join(wrk_dir, 'eval_results.csv')
csv_report = open(report_path, 'w', newline='')
writer = csv.DictWriter(csv_report, fieldnames=eval_spec_fields, delimiter=';')
writer.writeheader()
# --- main loop
for i in tqdm(range(args.start_idx, args.end_idx)):
obs = env.reset()
episode_id = i + 1
print("ITERATION NUMBER %d / %d" % (episode_id, args.end_idx))
# --- collect data and save replay buffer (and video / tfrecord)
if args.sim_mode == 'collect':
if args.dry_run: # only save initial image
_h, _w = args.frame_res
_cam_name = 'external_camera_1'
rgb_frame = env.sim.render(width=_w, height=_h, camera_name=_cam_name)
rgb_frame = rgb_frame[::-1, :, :] # original image is upside-down, flip
rgb_frame = rgb_frame / 255.0 # normalize RGB for predictor feeding
img_path = os.path.join(wrk_dir, 'init_%04d.png' % (episode_id, ))
# scipy.misc.imsave(img_path, rgb_frame)
Image.fromarray((rgb_frame * 255).astype(np.uint8)).save(img_path)
continue
# get task information from env
obj_names = env.task_object
goal_name = env.task_goal[0]
# save meta information
meta_info_dict = env.encoding_meta._asdict()
meta_info_path = os.path.join(wrk_dir, 'meta_info.json')
with open(meta_info_path, 'w') as fp:
json.dump(meta_info_dict, fp, indent=2, sort_keys=True)
# start tfrecorder
if args.rendering_mode == 'tfrecord':
record_name = 'replay_buffer_%04d' % (episode_id, )
env.start_tfrecorder(record_name)
# perform stacking
_stack(env, obj_names=obj_names, goal_name=goal_name)
# save as pkl
save_path = os.path.join(wrk_dir, 'replay_buffer_%04d.pkl' % (episode_id, ))
env.save_replay_buffer_pkl(save_path)
# save as tfrecord
if args.rendering_mode == 'tfrecord':
env.save_tfrecord()
# save as video
if env.rendering_mode == 'video':
env.recorder.flush()
# --- replay a buffer
elif args.sim_mode == 'replay':
with open(args.replay_buffer, 'rb') as f:
replay_buffer = pickle.load(f)
# read meta
operated_joints = replay_buffer['monitored_joints']
operated_mocaps = replay_buffer['monitored_mocaps']
operated_actuators = replay_buffer['actuated_joints']
operated_objects = replay_buffer['monitored_objects']
# read buffers
joint_qpos_buffer = replay_buffer['joint_qpos_buffer']
joint_qvel_buffer = replay_buffer['joint_qvel_buffer']
mocap_qpos_buffer = replay_buffer['mocap_qpos_buffer']
cmd_buffer = replay_buffer['cmd_buffer']
object_qpos_buffer = replay_buffer['object_qpos_buffer']
# init scene
for obj_name in operated_objects:
qpos0 = object_qpos_buffer[obj_name][0]
env.sim.data.set_joint_qpos(obj_name, qpos0)
for mcp_name in operated_mocaps:
qpos0 = mocap_qpos_buffer[mcp_name][0]
env.sim.data.set_mocap_pos(mcp_name, qpos0[:3])
env.sim.data.set_mocap_quat(mcp_name, qpos0[3:])
for _ in range(10): # step forward to drag mocap-controlled EE into place
env.sim.step()
print(">>> Scene reset to recorded initial state!")
while True:
env.render_extended()
action = cmd_buffer[env.get_ts()]
obs, reward, done, info = env.step(action)
if env.get_ts() >= env._max_episode_steps: break
# --- random wiggling (mostly debug)
elif args.sim_mode == 'random':
operated_joints = [
'robot0:shoulder_pan_joint',
'robot0:shoulder_lift_joint',
'robot0:upperarm_roll_joint',
'robot0:elbow_flex_joint',
'robot0:forearm_roll_joint',
'robot0:wrist_flex_joint',
'robot0:wrist_roll_joint',
'robot0:r_gripper_finger_joint',
'robot0:l_gripper_finger_joint',
]
operated_mocaps = ['robot0:mocap']
while True:
env.render_extended()
for jnt_name in operated_joints:
qvel = np.random.normal(loc=0.0, scale=2.0)
env.sim.data.set_joint_qvel(jnt_name, qvel)
for mcp_name in operated_mocaps:
cur_pos = env.sim.data.get_mocap_pos(mcp_name)
new_pos = cur_pos + np.random.normal(loc=0.0, scale=0.1, size=3)
env.sim.data.set_mocap_pos(mcp_name, new_pos)
env.ts += 1
env.sim.step()
if env.ts >= env._max_episode_steps: break
# --- controller
elif args.sim_mode == 'controller':
# constants
operated_joints = [ # <-- cmd_vel
'robot0:shoulder_pan_joint',
'robot0:shoulder_lift_joint',
'robot0:upperarm_roll_joint',
'robot0:elbow_flex_joint',
'robot0:forearm_roll_joint',
'robot0:wrist_flex_joint',
'robot0:wrist_roll_joint',
]
operated_mocaps = ['robot0:mocap'] # <-- cmd_ee
operated_actuators = [ # <-- cmd_grp
'robot0:r_gripper_finger_joint',
'robot0:l_gripper_finger_joint',
]
_h, _w = args.frame_res
_cam_name = 'external_camera_1'
# eval spec
eval_spec = dict(episode_eval_spec)
eval_spec['episode_id'] = episode_id
eval_spec['init_goal_dist'] = _eval_goal_dist(env, env.task_object[0], env.task_goal[0])
# command and trajectory information
cmd_ee, cmd_grp = [], []
traj_ee, traj_obj, pred_traj_ee, pred_traj_obj = [], [], [], []
# reset
predictor.reset()
if args.goal_condition == 'target':
target_frame = env.target_frame[0]
predictor.set_goal(target_frame)
# DEBUG dump target frame
target_frame_path = os.path.join(wrk_dir, 'target-%05d.png' % (episode_id, ))
# scipy.misc.imsave(target_frame_path, target_frame)
Image.fromarray((target_frame * 255).astype(np.uint8)).save(target_frame_path)
while True:
# render frame
if randomize_background:
wall_geom_name = 'wall_04'
wall_tex = texmodder.get_texture(wall_geom_name)
frame_wall_tex = next(bg_video_cycler)
img_frame_wall_tex = Image.fromarray(frame_wall_tex)
img_frame_wall_tex = img_frame_wall_tex.resize((wall_tex.width, wall_tex.height))
mod_wall_tex = np.array(img_frame_wall_tex)
texmodder.set_rgb(wall_geom_name, mod_wall_tex)
if args.observation_format == 'rgb':
data = env.sim.render(width=_w, height=_h, camera_name=_cam_name)
rgb_frame = np.copy(data[::-1, :, :]) # original image is upside-down
recorders['rgb'].feed(rgb_frame) # feed as uint8 frame to video recorder
rgb_frame = rgb_frame / 255.0 # normalize RGB for predictor feeding
obs_frame = rgb_frame
elif args.observation_format == 'rgbd':
rgb, depth = env.sim.render(width=_w, height=_h, camera_name=_cam_name, depth=True)
rgb_frame = np.copy(rgb[::-1, :, :]) # original image is upside-down
depth_frame = np.copy(depth[::-1]) # original image is upside-down
recorders['rgb'].feed(rgb_frame) # feed as uint8 frame to video recorder
rgb_frame = rgb_frame / 255.0 # normalize RGB for predictor feeding
obs_frame = np.concatenate([rgb_frame, np.expand_dims(depth_frame, axis=-1)], axis=-1) # RGB-D
# get robot state
if args.controller == 'e2evmc':
proprioception = np.zeros(shape=(7, ), dtype=np.float32)
for idx_jnt, jnt_name in enumerate(operated_joints):
proprioception[idx_jnt] = env.sim.data.get_joint_qpos(jnt_name)
elif args.controller == 'vfs':
mcp_name = 'robot0:mocap'
proprioception = env.sim.data.get_mocap_pos(mcp_name)
elif args.controller == 'tecnet':
proprioception = np.zeros(shape=(10, ), dtype=np.float32)
for idx_jnt, jnt_name in enumerate(operated_joints):
proprioception[idx_jnt] = env.sim.data.get_joint_qpos(jnt_name)
mcp_name = 'robot0:mocap'
proprioception[-3:] = env.sim.data.get_mocap_pos(mcp_name)
elif args.controller == 'static' or args.controller == 'gaussian':
proprioception = np.zeros(shape=(7, ), dtype=np.float32) # not used inside predictor
# predict commands
pred = predictor.predict(obs_frame, proprioception)
action = np.concatenate([pred['cmd_ee'], pred['cmd_grp']])
# feed additional debug output into separate recorders
if args.debug:
if predictor.cfg.proc_obs == 'dynimg':
dynbuff_frame = (pred['dynbuff'] * 255.0).astype(np.uint8)
recorders['dynbuff'].feed(dynbuff_frame)
if predictor.cfg.proc_tgt == 'dyndiff':
dyndiff_frame = (pred['dyndiff'] * 255.0).astype(np.uint8)
recorders['dyndiff'].feed(dyndiff_frame)
# print(action) # DEBUG
obs, reward, done, info = env.step(action)
# perform eval checks
goal_name = env.task_goal[0]
obj_name = env.task_object[0]
obj_vicinity = _eval_object_vicinity(env, obj_name)
if obj_vicinity and eval_spec['obj_vicinity'] < 1:
eval_spec['obj_vicinity'] += 1
print(">>> Successfully reached %s!" % obj_name)
grasp_success = _eval_grasp_success(env, obj_name)
if grasp_success and eval_spec['grasp_success'] < 1:
eval_spec['grasp_success'] += 1
print(">>> Successfully grasped %s!" % obj_name)
goal_dist = _eval_goal_dist(env, obj_name, goal_name)
eval_spec['min_goal_dist'] = min([eval_spec['min_goal_dist'], goal_dist])
eval_spec['max_goal_dist'] = max([eval_spec['max_goal_dist'], goal_dist])
# record commands and trajectories
cmd_ee.append(pred['cmd_ee'])
cmd_grp.append(pred['cmd_grp'])
traj_ee.append(np.copy(env.sim.data.get_mocap_pos('robot0:mocap')))
traj_obj.append(np.copy(env.sim.data.get_site_xpos(env.task_object[0])))
if 'pos_ee' in pred:
pred_traj_ee.append(pred['pos_ee'])
if 'pos_obj' in pred:
pred_traj_obj.append(pred['pos_obj'])
# terminate episode
if env.get_ts() >= env._max_episode_steps: break
# final evaluation of task success
eval_spec['final_goal_dist'] = _eval_goal_dist(env, env.task_object[0], env.task_goal[0])
task_success = _eval_task_success(env, obj_name, goal_name)
if task_success and eval_spec['task_success'] < 1:
eval_spec['task_success'] += 1
print(">>> Successfully placed %s!" % obj_name)
# save videos
for rec_key in recorders.keys():
video_path = recorders[rec_key].flush()
if rec_key == 'rgb':
eval_spec['video_file'] = video_path
# TODO: currently broken, because of ffmpeg clash -> refacor and fix!
# if args.debug: # save command and trajectory videos
# # commands
# ani = _animate_commands(cmd_ee, cmd_grp)
# save_path = os.path.join(wrk_dir, 'commands_%06d.mp4' % episode_id)
# ani.save(save_path)
# # trajectories
# ani = _animate_trajectories(traj_ee, traj_obj, pred_traj_ee, pred_traj_obj)
# save_path = os.path.join(wrk_dir, 'trajectories_%06d.mp4' % episode_id)
# ani.save(save_path)
# add eval spec to results
eval_results.append(eval_spec)
# print current success averages
for k in ['obj_vicinity', 'grasp_success', 'task_success']:
cur_avg = np.average([res[k] for res in eval_results]) * 100
print(">>> Current average success rate for %s: %.02f" % (k, cur_avg))
# append result to CSV
writer.writerow(eval_spec)
# --- unknown mode
else:
raise ValueError("Unknown simulation mode: %s" % (args.sim_mode, ))
# --- end main loop, cleanup
if args.sim_mode == 'controller':
csv_report.close()
txt_report_file = os.path.join(args.wrk_dir, 'controller', 'final_results.txt')
with open(txt_report_file, 'w') as fp:
for k in ['obj_vicinity', 'grasp_success', 'task_success']:
cur_avg = np.average([res[k] for res in eval_results]) * 100
fp.write(f"{k}\t{cur_avg:.2f}\n")
#endregion
# ---------- program entry point ----------
if __name__ == "__main__":
ARGS, UNPARSED = ARGPARSER.parse_known_args()
main(ARGS)