-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
221 lines (182 loc) · 7.52 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
#!/usr/bin/env python3
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from adaptive_span import AdaptiveSpan
# Size notations:
# B = batch_size, H = hidden_size, M = block_size, L = attn_span
def _skew(X, pad_value):
"""shift every row 1 step to right"""
# X = B x M x L
B, M, L = X.size()
X = F.pad(X, (0, M + 1), value=pad_value) # B x M x (L+M+1)
X = X.view(B, -1) # B x ML+MM+M
X = X[:, :-M] # B x ML+MM
X = X.view(B, M, M + L) # B x M x L+M
return X
def _unskew(X):
"""reverse _skew operation"""
# X = B x M x L+M
B, M, L = X.size()
L -= M
X = X.view(B, -1) # B x ML+MM
X = F.pad(X, (0, M)) # B x ML+MM+M
X = X.view(B, M, M + L + 1) # B x M x L+M+1
X = X[:, :, :L] # B x M x L
return X
class SeqAttention(nn.Module):
"""Sequential self-attention layer.
Each token will attend to its previous fixed number of steps.
Note that attention doesn't include the current step itself.
"""
def __init__(self, hidden_size, attn_span,
dropout, adapt_span_params, **kargs):
nn.Module.__init__(self)
self.dropout = nn.Dropout(dropout)
self.hidden_size = hidden_size # size of a single head
self.attn_span = attn_span
self.adapt_span_enabled = adapt_span_params['adapt_span_enabled']
if self.adapt_span_enabled:
self.adaptive_span = AdaptiveSpan(attn_span=attn_span,
**adapt_span_params, **kargs)
def forward(self, query, key, value, key_pe):
# query size = B x M x H
# key, value sizes = B x (M+L) x H
if self.adapt_span_enabled:
# [optional] trim out memory to reduce unnecessary computation
key, value, key_pe = self.adaptive_span.trim_memory(
query, key, value, key_pe)
# compute attention from context
# B x M (dest) x (M+L) (src)
attn_cont = torch.matmul(query, key.transpose(-1, -2))
attn_cont = _unskew(attn_cont) # B x M x L
# compute the effect of position embedding
attn_pos = torch.matmul(query, key_pe) # B x M x L_pos
attn = attn_cont + attn_pos
attn = attn / math.sqrt(self.hidden_size) # B x M X L_pos
attn = F.softmax(attn, dim=-1)
if self.adapt_span_enabled:
# trim attention lengths according to the learned span
attn = self.adaptive_span(attn)
attn = self.dropout(attn) # B x M X L_pos
attn_cont = _skew(attn, 0) # B x M X (L+M)
out = torch.matmul(attn_cont, value) # B x M x H
return out
def get_cache_size(self):
if self.adapt_span_enabled:
return self.adaptive_span.get_cache_size()
else:
return self.attn_span
class MultiHeadSeqAttention(nn.Module):
def __init__(self, hidden_size, nb_heads, **kargs):
nn.Module.__init__(self)
assert hidden_size % nb_heads == 0
self.nb_heads = nb_heads
self.head_dim = hidden_size // nb_heads
self.attn = SeqAttention(
hidden_size=self.head_dim, nb_heads=nb_heads, **kargs)
self.proj_query = nn.Linear(hidden_size, hidden_size, bias=False)
self.proj_out = nn.Linear(hidden_size, hidden_size, bias=False)
self.proj_val = nn.Linear(hidden_size, hidden_size, bias=False)
self.proj_key = nn.Linear(hidden_size, hidden_size, bias=False)
def head_reshape(self, x):
K = self.nb_heads
D = self.head_dim
x = x.view(x.size()[:-1] + (K, D)) # B x (M+L) x K x D
x = x.transpose(1, 2).contiguous() # B x K x (M+L) x D
x = x.view(-1, x.size(-2), x.size(-1)) # B_K x (M+L) x D
return x
def forward(self, query, key, value, key_pe):
B = query.size(0)
K = self.nb_heads
D = self.head_dim
M = query.size(1)
query = self.proj_query(query)
query = self.head_reshape(query)
value = self.proj_val(value)
value = self.head_reshape(value)
key = self.proj_key(key)
key = self.head_reshape(key)
out = self.attn(query, key, value, key_pe) # B_K x M x D
out = out.view(B, K, M, D) # B x K x M x D
out = out.transpose(1, 2).contiguous() # B x M x K x D
out = out.view(B, M, -1) # B x M x K_D
out = self.proj_out(out)
return out
class FeedForwardLayer(nn.Module):
def __init__(self, hidden_size, inner_hidden_size, dropout, **kargs):
nn.Module.__init__(self)
self.fc1 = nn.Linear(hidden_size, inner_hidden_size)
self.fc2 = nn.Linear(inner_hidden_size, hidden_size)
self.dropout = nn.Dropout(dropout)
def forward(self, h):
h1 = F.relu(self.fc1(h))
h1 = self.dropout(h1)
h2 = self.fc2(h1)
return h2
class TransformerSeqLayer(nn.Module):
def __init__(self, hidden_size,s,f, **kargs):
nn.Module.__init__(self)
self.attn = MultiHeadSeqAttention(hidden_size=hidden_size, **kargs) if s is 's' else None
self.ff = FeedForwardLayer(hidden_size=hidden_size, **kargs) if f is 'f' else None
self.norm1 = nn.LayerNorm(hidden_size)
self.norm2 = nn.LayerNorm(hidden_size)
self.use_attn = s == 's'
self.use_ff = f == 'f'
def forward(self, h, h_cache, key_pe):
# h = B x M x H
# h_cache = B x L x H
if self.use_attn:
h_all = torch.cat([h_cache, h], dim=1) # B x (M+L) x H
attn_out = self.attn(h, h_all, h_all, key_pe)
h = self.norm1(h + attn_out) # B x M x H
if self.use_ff:
ff_out = self.ff(h)
h = self.norm2(h + ff_out) # B x M x H
return h
class TransformerSeq(nn.Module):
def __init__(self, vocab_size, hidden_size, nb_heads, nb_layers,
attn_span, architecture, **kargs):
nn.Module.__init__(self)
# token embeddings
self.in_emb = nn.Embedding(vocab_size, hidden_size)
self.out_emb = nn.Linear(hidden_size, vocab_size)
# position embeddings
self.key_pe = nn.Parameter(
torch.randn(1, hidden_size // nb_heads, attn_span))
arch = architecture
print(arch)
self.attn_layer_count = arch.count('s')
self.layers = nn.ModuleList()
self.layers.extend(
TransformerSeqLayer(
hidden_size=hidden_size, s= arch[2*i], f=arch[2*i+1], nb_heads=nb_heads,
attn_span=attn_span, **kargs)
for i in range(nb_layers))
def forward(self, x, h_cache):
# x size = B x M
block_size = x.size(1)
h = self.in_emb(x) # B x M x H
h_cache_next = []
for l, layer in enumerate(self.layers):
if layer.use_attn:
cache_size = layer.attn.attn.get_cache_size()
if cache_size > block_size:
h_cache_next_l = torch.cat(
[h_cache[l][:, -cache_size + block_size:, :], h],
dim=1).detach()
else:
h_cache_next_l = h[:, -cache_size:, :].detach()
h_cache_next.append(h_cache_next_l)
h = layer(h, h_cache[l], self.key_pe) # B x M x H
else:
h = layer(h, [], self.key_pe)
out = F.log_softmax(self.out_emb(h), dim=-1)
return out, h_cache_next