-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDESCRIPTION
71 lines (71 loc) · 2.63 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
Package: sentopics
Type: Package
Title: Tools for Joint Sentiment and Topic Analysis of Textual Data
Version: 0.7.5
Date: 2025-01-08
Authors@R: c(
person("Olivier", "Delmarcelle", email = "delmarcelle.olivier@gmail.com", role = c("aut", "cre"), comment = c(ORCID = "0000-0003-4347-070X")),
person("Samuel", "Borms", email = "samuel.borms@unine.ch", role = c("ctb"), comment = c(ORCID = "0000-0001-9533-1870")),
person("Chengua", "Lin", email = "chenghua.lin@abdn.ac.uk", role = "cph", comment = "Original JST implementation"),
person("Yulan", "He", email = "yulan.he@warwick.ac.uk", role = "cph", comment = "Original JST implementation"),
person("Jose", "Bernardo", role = "cph", comment = "Original JST implementation"),
person("David", "Robinson", , "admiral.david@gmail.com", role = "cph", comment = "Implementation of reorder_within()"),
person("Julia", "Silge", , "julia.silge@gmail.com", role = "cph",
comment = c("Implementation of reorder_within()", ORCID = "0000-0002-3671-836X"))
)
Maintainer: Olivier Delmarcelle <delmarcelle.olivier@gmail.com>
Description: A framework that joins topic modeling and sentiment analysis of
textual data. The package implements a fast Gibbs sampling estimation of
Latent Dirichlet Allocation (Griffiths and Steyvers (2004)
<doi:10.1073/pnas.0307752101>) and Joint Sentiment/Topic Model (Lin, He,
Everson and Ruger (2012) <doi:10.1109/TKDE.2011.48>). It offers a variety of
helpers and visualizations to analyze the result of topic modeling. The
framework also allows enriching topic models with dates and externally
computed sentiment measures. A flexible aggregation scheme enables the
creation of time series of sentiment or topical proportions from the enriched
topic models. Moreover, a novel method jointly aggregates topic proportions
and sentiment measures to derive time series of topical sentiment.
License: GPL (>= 3)
BugReports: https://github.com/odelmarcelle/sentopics/issues
URL: https://github.com/odelmarcelle/sentopics
Encoding: UTF-8
Depends: R (>= 3.5.0)
Imports: Rcpp (>= 1.0.4.6),
methods,
generics,
quanteda (>= 3.2.0),
data.table (>= 1.13.6),
RcppHungarian
Suggests:
ggplot2,
ggridges,
plotly,
RColorBrewer,
xts,
zoo,
future,
future.apply,
progressr,
progress,
testthat,
covr,
stm,
lda,
topicmodels,
seededlda (>= 1.4.0),
keyATM,
LDAvis,
servr,
textcat,
stringr,
sentometrics,
spacyr,
knitr,
rmarkdown,
webshot
LinkingTo: Rcpp, RcppArmadillo, RcppProgress
RcppModules: model_module
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.2
LazyData: true
VignetteBuilder: knitr