forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
weight.py
1276 lines (1149 loc) · 58 KB
/
weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import configparser
import time
from operator import attrgetter
from pathlib import Path
from typing import Dict, List, Optional, Union
import numpy as np
import torch
from safetensors import safe_open
import tensorrt_llm
import tensorrt_llm.logger as logger
from tensorrt_llm._utils import str_dtype_to_torch, torch_to_numpy
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import LLaMAForCausalLM
from tensorrt_llm.models.quantized.quant import get_dummy_quant_scales
from tensorrt_llm.quantization import QuantMode
def get_scaling_factors(
model_path: Union[str, Path],
num_layers: int,
quant_mode: Optional[QuantMode] = None,
) -> Optional[Dict[str, List[int]]]:
""" Get the scaling factors for LLaMA model
Returns a dictionary of scaling factors for the selected layers of the
LLaMA model.
Args:
model_path (str): Path to the quantized LLaMA model
layers (list): List of layers to get the scaling factors for. If None,
all layers are selected.
Returns:
dict: Dictionary of scaling factors for the selected layers of the
LLaMA model.
example:
{
'qkv_act': qkv_act_scale,
'qkv_weights': qkv_weights_scale,
'qkv_output' : qkv_outputs_scale,
'dense_act': dense_act_scale,
'dense_weights': dense_weights_scale,
'fc_act': fc_act_scale,
'fc_weights': fc_weights_scale,
'gate_act': gate_act_scale,
'gate_weights': gate_weights_scale,
'proj_act': proj_act_scale,
'proj_weights': proj_weights_scale,
}
"""
if model_path is None:
logger.warning(f"--quantized_fp8_model_path not specified. "
f"Initialize quantization scales automatically.")
return get_dummy_quant_scales(num_layers)
weight_dict = np.load(model_path)
# yapf: disable
scaling_factor = {
'qkv_act': [],
'qkv_weights': [],
'qkv_output': [],
'dense_act': [],
'dense_weights': [],
'fc_act': [],
'fc_weights': [],
'gate_act': [],
'gate_weights': [],
'proj_act': [],
'proj_weights': [],
}
for layer in range(num_layers):
scaling_factor['qkv_act'].append(max(
weight_dict[f'_np:layers:{layer}:attention:qkv:q:activation_scaling_factor'].item(),
weight_dict[f'_np:layers:{layer}:attention:qkv:k:activation_scaling_factor'].item(),
weight_dict[f'_np:layers:{layer}:attention:qkv:v:activation_scaling_factor'].item()
))
scaling_factor['qkv_weights'].append(max(
weight_dict[f'_np:layers:{layer}:attention:qkv:q:weights_scaling_factor'].item(),
weight_dict[f'_np:layers:{layer}:attention:qkv:k:weights_scaling_factor'].item(),
weight_dict[f'_np:layers:{layer}:attention:qkv:v:weights_scaling_factor'].item()
))
if quant_mode is not None and quant_mode.has_fp8_kv_cache():
# Not calibrarting KV cache.
scaling_factor['qkv_output'].append(1.0)
scaling_factor['dense_act'].append(weight_dict[f'_np:layers:{layer}:attention:dense:activation_scaling_factor'].item())
scaling_factor['dense_weights'].append(weight_dict[f'_np:layers:{layer}:attention:dense:weights_scaling_factor'].item())
scaling_factor['fc_act'].append(weight_dict[f'_np:layers:{layer}:mlp:fc:activation_scaling_factor'].item())
scaling_factor['fc_weights'].append(weight_dict[f'_np:layers:{layer}:mlp:fc:weights_scaling_factor'].item())
scaling_factor['gate_act'].append(weight_dict[f'_np:layers:{layer}:mlp:gate:activation_scaling_factor'].item())
scaling_factor['gate_weights'].append(weight_dict[f'_np:layers:{layer}:mlp:gate:weights_scaling_factor'].item())
scaling_factor['proj_act'].append(weight_dict[f'_np:layers:{layer}:mlp:proj:activation_scaling_factor'].item())
scaling_factor['proj_weights'].append(weight_dict[f'_np:layers:{layer}:mlp:proj:weights_scaling_factor'].item())
# yapf: enable
for k, v in scaling_factor.items():
assert len(v) == num_layers, \
f'Expect scaling factor {k} of length {num_layers}, got {len(v)}'
return scaling_factor
def gen_suffix(rank, use_smooth_quant, quant_per_channel):
suffix = f"{rank}.bin"
if use_smooth_quant:
sq_prefix = "int8."
if quant_per_channel:
sq_prefix += "col."
suffix = sq_prefix + suffix
return suffix
def extract_layer_idx(name):
ss = name.split('.')
for s in ss:
if s.isdigit():
return s
return None
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return np.ascontiguousarray(np.split(v, tp_size)[idx])
else:
return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx])
def dup_kv_weight(v, num_head, tp_size):
assert tp_size % num_head == 0
reps = tp_size // num_head
head_size = v.shape[0] // num_head
v = v.reshape(num_head, head_size,
-1)[:, None, :, :].expand(num_head, reps, head_size,
v.shape[1])
return v.reshape(num_head * reps * head_size, -1).clone()
def parse_ft_config(ini_file):
gpt_config = configparser.ConfigParser()
gpt_config.read(ini_file)
n_embd = gpt_config.getint('llama', 'hidden_size')
n_head = gpt_config.getint('llama', 'num_attention_heads')
n_layer = gpt_config.getint('llama', 'num_hidden_layers')
n_positions = gpt_config.getint('llama', 'max_position_embeddings')
vocab_size = gpt_config.getint('llama', 'vocab_size')
hidden_act = gpt_config.get('llama', 'hidden_act')
inter_size = gpt_config.getint('llama', 'intermediate_size', fallback=None)
n_kv_head = gpt_config.getint('llama', 'num_key_value_heads', fallback=None)
if inter_size is None:
inter_size = 4 * n_embd
return n_embd, n_head, n_layer, n_positions, vocab_size, hidden_act, inter_size, n_kv_head
def load_from_hf_llama(tensorrt_llm_llama: tensorrt_llm.models.LLaMAForCausalLM,
hf_llama,
mapping=Mapping(),
dtype='float32'):
tensorrt_llm.logger.info('Loading weights from HF LLaMA...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_llama, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
use_weight_only = quant_mode.is_weight_only()
num_kv_heads = tensorrt_llm_llama.num_kv_heads
mha_mode = (num_kv_heads == tensorrt_llm_llama.num_heads)
model_params = dict(hf_llama.named_parameters())
for l in range(hf_llama.config.num_hidden_layers):
prefix = f'model.layers.{l}.self_attn.'
q_weight = model_params[prefix + 'q_proj.weight']
k_weight = model_params[prefix + 'k_proj.weight']
v_weight = model_params[prefix + 'v_proj.weight']
if not mha_mode:
head_size = tensorrt_llm_llama.hidden_size // tensorrt_llm_llama.num_heads
if num_kv_heads < mapping.tp_size:
# duplicate the KV heads up to tensor_parallel
k_weight = dup_kv_weight(k_weight, num_kv_heads,
mapping.tp_size)
v_weight = dup_kv_weight(v_weight, num_kv_heads,
mapping.tp_size)
assert (k_weight.shape[0] % (mapping.tp_size * head_size)) == 0
assert (v_weight.shape[0] % (mapping.tp_size * head_size)) == 0
qkv_weight = [q_weight, k_weight, v_weight]
else:
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
model_params[prefix + 'qkv_proj.weight'] = qkv_weight
torch_dtype = str_dtype_to_torch(dtype)
layers_per_pipeline_stage = hf_llama.config.num_hidden_layers // mapping.pp_size
layers_range = list(
range(mapping.pp_rank * layers_per_pipeline_stage,
(mapping.pp_rank + 1) * layers_per_pipeline_stage, 1))
for k, v in model_params.items():
if isinstance(v, list):
v = [torch_to_numpy(vv.to(torch_dtype).detach().cpu()) for vv in v]
else:
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
if 'model.embed_tokens.weight' in k:
if tensorrt_llm_llama.use_parallel_embedding:
v = split(v, mapping.tp_size, mapping.tp_rank,
tensorrt_llm_llama.embedding_sharding_dim)
if mapping.is_first_pp_rank():
tensorrt_llm_llama.vocab_embedding.weight.value = v
elif 'model.norm.weight' in k:
if mapping.is_last_pp_rank():
tensorrt_llm_llama.ln_f.weight.value = v
elif 'lm_head.weight' in k:
if mapping.is_last_pp_rank():
tensorrt_llm_llama.lm_head.weight.value = np.ascontiguousarray(
split(v, mapping.tp_size, mapping.tp_rank))
else:
layer_idx = extract_layer_idx(k)
if layer_idx is None or int(layer_idx) not in layers_range:
continue
idx = int(layer_idx) - mapping.pp_rank * layers_per_pipeline_stage
if idx >= tensorrt_llm_llama.num_layers:
continue
if 'input_layernorm.weight' in k:
tensorrt_llm_llama.layers[idx].input_layernorm.weight.value = v
elif 'post_attention_layernorm.weight' in k:
dst = tensorrt_llm_llama.layers[idx].post_layernorm.weight
dst.value = v
elif 'self_attn.qkv_proj.weight' in k:
dst = tensorrt_llm_llama.layers[idx].attention.qkv.weight
if not mha_mode:
assert isinstance(v, list) and len(v) == 3
wq = split(v[0], mapping.tp_size, mapping.tp_rank)
wk = split(v[1], mapping.tp_size, mapping.tp_rank)
wv = split(v[2], mapping.tp_size, mapping.tp_rank)
split_v = np.concatenate((wq, wk, wv))
else:
q_emb = v.shape[0] // 3
model_emb = v.shape[1]
v = v.reshape(3, q_emb, model_emb)
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=1)
split_v = split_v.reshape(3 * (q_emb // mapping.tp_size),
model_emb)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = \
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[
idx].attention.qkv.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
elif 'self_attn.o_proj.weight' in k:
dst = tensorrt_llm_llama.layers[idx].attention.dense.weight
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=1)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = \
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[
idx].attention.dense.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
elif 'mlp.up_proj.weight' in k:
dst = tensorrt_llm_llama.layers[idx].mlp.gate.weight
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=0)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = \
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[
idx].mlp.gate.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
elif 'mlp.down_proj.weight' in k:
dst = tensorrt_llm_llama.layers[idx].mlp.proj.weight
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=1)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = \
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[
idx].mlp.proj.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
elif 'mlp.gate_proj.weight' in k:
dst = tensorrt_llm_llama.layers[idx].mlp.fc.weight
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=0)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = \
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[
idx].mlp.fc.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
return
def load_from_meta_llama(
tensorrt_llm_llama: tensorrt_llm.models.LLaMAForCausalLM,
meta_ckpt_dir,
mapping=Mapping(),
dtype="float32"):
torch_dtype = str_dtype_to_torch(dtype)
def gather_ckpts(ckpts):
gathered = {}
for k in ckpts[0]:
d = 0
if any([n in k for n in ["wo", "w2", "tok"]]):
d = 1
if "norm" in k or "rope" in k: # no TP
gathered[k] = ckpts[0][k].clone()
else:
gathered[k] = torch.cat([pt[k] for pt in ckpts], dim=d).clone()
return gathered
def split_ckpt(ckpt, ranks_per_ckpt, ckpt_rank):
split_ckpt = {}
for k in ckpt:
d = 0
if any([n in k for n in ["wo", "w2", "tok"]]):
d = 1
if "norm" in k or "rope" in k: # no TP
split_ckpt[k] = ckpt[k].clone()
elif tensorrt_llm_llama.num_kv_heads < mapping.tp_size and any(
[n in k for n in ["wk", "wv"]]):
assert mapping.tp_size % tensorrt_llm_llama.num_kv_heads == 0
# special case: we need to duplicate KV head
tmp = dup_kv_weight(ckpt[k], tensorrt_llm_llama.num_kv_heads,
mapping.tp_size)
split_ckpt[k] = torch.split(tmp,
tmp.shape[d] // ranks_per_ckpt,
dim=d)[ckpt_rank].clone()
else:
split_ckpt[k] = torch.split(ckpt[k],
ckpt[k].shape[d] // ranks_per_ckpt,
dim=d)[ckpt_rank].clone()
return split_ckpt
def get_current_weights(num_ckpts):
if num_ckpts > mapping.tp_size:
# combine ckpts
assert (num_ckpts % mapping.tp_size) == 0
nf = num_ckpts // mapping.tp_size
fs = nf * mapping.tp_rank
file_ids = list(range(fs, fs + nf))
ckpts = []
for f in file_ids:
ckpt = torch.load(Path(meta_ckpt_dir,
f"consolidated.{f:02d}.pth"),
map_location="cpu")
ckpts.append(ckpt)
return gather_ckpts(ckpts)
elif num_ckpts < mapping.tp_size:
# split ckpt
assert (mapping.tp_size % num_ckpts) == 0
ranks_per_ckpt = mapping.tp_size // num_ckpts
ckpt_fid = mapping.tp_rank // ranks_per_ckpt
ckpt_rank = mapping.tp_rank % ranks_per_ckpt
nH_per_ckpt = tensorrt_llm_llama.num_heads // num_ckpts
assert (nH_per_ckpt % ranks_per_ckpt) == 0
ckpt = torch.load(Path(meta_ckpt_dir,
f"consolidated.{ckpt_fid:02d}.pth"),
map_location="cpu")
return split_ckpt(ckpt, ranks_per_ckpt, ckpt_rank)
# num_ckpts == tensor_parallel, 1:1 mapping from files to TP
return torch.load(Path(meta_ckpt_dir,
f"consolidated.{mapping.tp_rank:02d}.pth"),
map_location="cpu")
def permute(w, nH, d, dH):
# due to MQA's wk, nH*dH != d could be true
return w.view(nH, dH // 2, 2, d).transpose(1, 2).reshape(nH * dH, d)
if not hasattr(load_from_meta_llama, "saved_embed"):
load_from_meta_llama.saved_embed = None
def gather_embedding(cur_embed, name: str, num_ckpts):
if mapping.tp_size == 1:
# even if num_ckpts > 1, get_current_weights will already have it gathered
return cur_embed
if load_from_meta_llama.saved_embed is None:
embeds = [None] * num_ckpts
for i in range(num_ckpts):
ckpt = torch.load(Path(meta_ckpt_dir,
f"consolidated.{i:02d}.pth"),
map_location="cpu")
embeds[i] = ckpt[name]
embed = torch.cat(embeds, dim=1).to(torch_dtype)
load_from_meta_llama.saved_embed = torch_to_numpy(
embed) # cache the embedding, not needed if no refit
return load_from_meta_llama.saved_embed
tensorrt_llm.logger.info('Loading weights from Meta LLaMA checkpoints ...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_llama, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
torch.int8
elif quant_mode.is_int4_weight_only():
torch.quint4x2
quant_mode.is_weight_only()
num_kv_heads = tensorrt_llm_llama.num_kv_heads
mha_mode = (num_kv_heads == tensorrt_llm_llama.num_heads)
ckpts = list(Path(meta_ckpt_dir).glob("consolidated.*.pth"))
num_ckpts = len(ckpts)
# llama/llama2 doesn't have MQA. So, simplifying loader logic by not worrying about it.
assert num_kv_heads > 1 or num_kv_heads >= num_ckpts, \
f"We don't know how the {num_kv_heads} KV heads are distributed among {num_ckpts} checkpoints."
head_size = tensorrt_llm_llama.hidden_size // tensorrt_llm_llama.num_heads
ckpt = get_current_weights(num_ckpts)
layers_range = list(
range(mapping.pp_rank * tensorrt_llm_llama.num_layers,
(mapping.pp_rank + 1) * tensorrt_llm_llama.num_layers, 1))
for l in layers_range:
prefix = f'layers.{l}.attention.'
q_weight = permute(ckpt[prefix + 'wq.weight'].clone(),
nH=(tensorrt_llm_llama.num_heads // mapping.tp_size),
d=tensorrt_llm_llama.hidden_size,
dH=head_size)
if num_kv_heads < mapping.tp_size and num_ckpts >= mapping.tp_size:
assert mapping.tp_size % num_kv_heads == 0
assert False, "Not supported yet"
k_weight = permute(ckpt[prefix + 'wk.weight'].clone(),
nH=((num_kv_heads + mapping.tp_size - 1) //
mapping.tp_size),
d=tensorrt_llm_llama.hidden_size,
dH=head_size)
v_weight = ckpt[prefix + 'wv.weight'].clone()
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
ckpt[prefix + 'qkv.weight'] = qkv_weight
for k, v in ckpt.items():
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
if "tok_embeddings" in k:
if not tensorrt_llm_llama.use_parallel_embedding:
v = gather_embedding(v, k, num_ckpts)
elif tensorrt_llm_llama.embedding_sharding_dim == 0:
# this needs a gather and then resplit along different dims
v = gather_embedding(v, k, num_ckpts)
v = split(v, mapping.tp_size, mapping.tp_rank, 0)
if mapping.is_first_pp_rank():
tensorrt_llm_llama.vocab_embedding.weight.value = v
elif "output" in k:
if mapping.is_last_pp_rank():
tensorrt_llm_llama.lm_head.weight.value = v
elif k == "norm.weight":
if mapping.is_last_pp_rank():
tensorrt_llm_llama.ln_f.weight.value = v
else:
# layer specific weights
layer_idx = extract_layer_idx(k)
if layer_idx is None:
continue
idx = int(
layer_idx) - mapping.pp_rank * tensorrt_llm_llama.num_layers
if idx >= tensorrt_llm_llama.num_layers:
continue
if 'attention_norm.weight' in k:
tensorrt_llm_llama.layers[idx].input_layernorm.weight.value = v
elif 'ffn_norm.weight' in k:
tensorrt_llm_llama.layers[idx].post_layernorm.weight.value = v
elif 'feed_forward.w3.weight' in k:
tensorrt_llm_llama.layers[idx].mlp.gate.weight.value = v
elif 'feed_forward.w2.weight' in k:
tensorrt_llm_llama.layers[idx].mlp.proj.weight.value = v
elif 'feed_forward.w1.weight' in k:
tensorrt_llm_llama.layers[idx].mlp.fc.weight.value = v
elif 'attention.wo.weight' in k:
tensorrt_llm_llama.layers[idx].attention.dense.weight.value = v
elif 'attention.qkv.weight' in k:
tensorrt_llm_llama.layers[idx].attention.qkv.weight.value = v
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
return
def load_from_binary(tensorrt_llm_llama: LLaMAForCausalLM,
dir_path,
mapping=Mapping(),
fp16=False,
multi_query_mode=False):
tensorrt_llm.logger.info('Loading weights from FT...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_llama, 'quant_mode', QuantMode(0))
n_embd, n_head, n_layer, n_positions, vocab_size, hidden_act, inter_size, n_kv_head = parse_ft_config(
Path(dir_path) / 'config.ini')
np_dtype = np.float16 if fp16 else np.float32
def fromfile(dir_path, name, shape=None, dtype=None):
dtype = np_dtype if dtype is None else dtype
p = dir_path + '/' + name
if Path(p).exists():
t = np.fromfile(p, dtype=dtype)
if shape is not None:
t = t.reshape(shape)
return t
return None
def set_smoothquant_scale_factors(module,
pre_scale_weight,
dir_path,
basename,
shape,
per_tok_dyn,
per_channel,
is_qkv=False,
rank=None):
suffix = "bin"
if per_channel:
if rank is not None:
suffix = f"{rank}." + suffix
suffix = "col." + suffix
col_shape = shape if (per_channel or is_qkv) else [1, 1]
if per_tok_dyn:
if pre_scale_weight is not None:
pre_scale_weight.value = np.array([1.0], dtype=np.float32)
if is_qkv and not per_channel:
t = fromfile(dir_path,
f"{basename}scale_w_quant_orig.{rank}.{suffix}",
col_shape, np.float32)
else:
t = fromfile(dir_path, f"{basename}scale_w_quant_orig.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
else:
t = fromfile(dir_path, f"{basename}scale_x_orig_quant.bin", [1],
np.float32)
pre_scale_weight.value = t
if is_qkv:
t = fromfile(dir_path,
f"{basename}scale_y_accum_quant.{rank}.{suffix}",
col_shape, np.float32)
else:
t = fromfile(dir_path,
f"{basename}scale_y_accum_quant.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
t = fromfile(dir_path, f"{basename}scale_y_quant_orig.bin", [1, 1],
np.float32)
module.act_scale.value = t
def set_smoother(module, dir_path, base_name, shape, rank):
suffix = f"{rank}.bin"
t = fromfile(dir_path, f"{base_name}.smoother.{suffix}", shape,
np.float32)
module.smoother.value = t
# Determine the quantization mode.
quant_mode = getattr(tensorrt_llm_llama, "quant_mode", QuantMode(0))
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
# Do we use SmoothQuant?
use_smooth_quant = quant_mode.has_act_and_weight_quant()
# Do we use quantization per token?
quant_per_token_dyn = quant_mode.has_per_token_dynamic_scaling()
# Do we use quantization per channel?
quant_per_channel = quant_mode.has_per_channel_scaling()
# Do we use INT4/INT8 weight-only?
use_weight_only = quant_mode.is_weight_only()
# Int8 KV cache
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
def sq_trick(x):
return x.view(np.float32) if use_smooth_quant else x
# Debug
suffix = gen_suffix(mapping.tp_rank, use_smooth_quant, quant_per_channel)
# The type of weights.
w_type = np_dtype if not use_smooth_quant else np.int8
if mapping.is_first_pp_rank():
tensorrt_llm_llama.vocab_embedding.weight.value = (fromfile(
dir_path, 'vocab_embedding.weight.bin', [vocab_size, n_embd]))
if mapping.is_last_pp_rank():
tensorrt_llm_llama.ln_f.weight.value = (fromfile(
dir_path, 'ln_f.weight.bin'))
# share input embedding
lm_head_weight = fromfile(dir_path, 'lm_head.weight.bin',
[vocab_size, n_embd])
if vocab_size % mapping.tp_size != 0:
# padding
vocab_size_padded = tensorrt_llm_llama.lm_head.out_features * mapping.tp_size
pad_width = vocab_size_padded - vocab_size
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)),
'constant',
constant_values=0)
if mapping.is_last_pp_rank():
tensorrt_llm_llama.lm_head.weight.value = np.ascontiguousarray(
split(lm_head_weight, mapping.tp_size, mapping.tp_rank))
layers_range = list(
range(mapping.pp_rank * tensorrt_llm_llama.num_layers,
(mapping.pp_rank + 1) * tensorrt_llm_llama.num_layers, 1))
for i in layers_range:
n_groups = n_head // n_kv_head
c_attn_out_dim = (
3 * n_embd // mapping.tp_size) if not multi_query_mode else (
n_embd // mapping.tp_size +
(n_embd // n_head * n_groups) // mapping.tp_size * 2)
idx = i - mapping.pp_rank * tensorrt_llm_llama.num_layers
tensorrt_llm_llama.layers[idx].input_layernorm.weight.value = (fromfile(
dir_path, 'model.layers.' + str(i) + '.input_layernorm.weight.bin'))
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.weight.' + suffix,
[n_embd, c_attn_out_dim], w_type)
if t is not None:
dst = tensorrt_llm_llama.layers[idx].attention.qkv.weight
if use_smooth_quant:
dst.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
set_smoothquant_scale_factors(
tensorrt_llm_llama.layers[idx].attention.qkv,
tensorrt_llm_llama.layers[idx].input_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.attention.query_key_value.',
[1, c_attn_out_dim],
quant_per_token_dyn,
quant_per_channel,
rank=mapping.tp_rank,
is_qkv=True)
elif use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[
i].attention.qkv.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
dst = tensorrt_llm_llama.layers[idx].attention.dense.weight
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.attention.dense.weight.' + suffix,
[n_embd // mapping.tp_size, n_embd], w_type)
if use_smooth_quant:
dst.value = sq_trick(np.ascontiguousarray(np.transpose(t, [1, 0])))
dense_scale = getattr(tensorrt_llm_llama.layers[idx].attention,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
tensorrt_llm_llama.layers[idx].attention.dense, dense_scale,
dir_path, 'model.layers.' + str(i) + '.attention.dense.',
[1, n_embd], quant_per_token_dyn, quant_per_channel)
set_smoother(tensorrt_llm_llama.layers[idx].attention.dense,
dir_path,
'model.layers.' + str(i) + '.attention.dense',
[1, n_embd // mapping.tp_size], mapping.tp_rank)
elif use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[
i].attention.dense.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
dst = tensorrt_llm_llama.layers[idx].post_layernorm.weight
dst.value = fromfile(
dir_path, 'model.layers.' + str(i) + '.post_layernorm.weight.bin')
t = fromfile(dir_path,
'model.layers.' + str(i) + '.mlp.fc.weight.' + suffix,
[n_embd, inter_size // mapping.tp_size], w_type)
if use_smooth_quant:
tensorrt_llm_llama.layers[idx].mlp.fc.weight.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
set_smoothquant_scale_factors(
tensorrt_llm_llama.layers[idx].mlp.fc,
tensorrt_llm_llama.layers[idx].post_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.mlp.fc.',
[1, inter_size // mapping.tp_size],
quant_per_token_dyn,
quant_per_channel,
rank=mapping.tp_rank)
elif use_weight_only:
dst = tensorrt_llm_llama.layers[i].mlp.fc.weight
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[i].mlp.fc.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
tensorrt_llm_llama.layers[
idx].mlp.fc.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
t = fromfile(dir_path,
'model.layers.' + str(i) + '.mlp.gate.weight.' + suffix,
[n_embd, inter_size // mapping.tp_size], w_type)
if use_smooth_quant:
tensorrt_llm_llama.layers[idx].mlp.gate.weight.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
set_smoothquant_scale_factors(
tensorrt_llm_llama.layers[idx].mlp.gate,
tensorrt_llm_llama.layers[idx].post_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.mlp.gate.',
[1, inter_size // mapping.tp_size],
quant_per_token_dyn,
quant_per_channel,
rank=mapping.tp_rank)
elif use_weight_only:
dst = tensorrt_llm_llama.layers[i].mlp.gate.weight
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[i].mlp.gate.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
tensorrt_llm_llama.layers[
idx].mlp.gate.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
t = fromfile(dir_path,
'model.layers.' + str(i) + '.mlp.proj.weight.' + suffix,
[inter_size // mapping.tp_size, n_embd], w_type)
if use_smooth_quant:
tensorrt_llm_llama.layers[idx].mlp.proj.weight.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
proj_scale = getattr(tensorrt_llm_llama.layers[idx].mlp,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
tensorrt_llm_llama.layers[idx].mlp.proj, proj_scale, dir_path,
'model.layers.' + str(i) + '.mlp.proj.', [1, n_embd],
quant_per_token_dyn, quant_per_channel)
set_smoother(tensorrt_llm_llama.layers[idx].mlp.proj, dir_path,
'model.layers.' + str(i) + '.mlp.proj',
[1, inter_size // mapping.tp_size], mapping.tp_rank)
elif use_weight_only:
dst = tensorrt_llm_llama.layers[i].mlp.proj.weight
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[i].mlp.proj.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
tensorrt_llm_llama.layers[idx].mlp.proj.weight.value = (
np.ascontiguousarray(np.transpose(t, [1, 0])))
if use_int8_kv_cache:
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.scale_y_quant_orig.bin', [1],
np.float32)
tensorrt_llm_llama.layers[
idx].attention.kv_orig_quant_scale.value = 1.0 / t
tensorrt_llm_llama.layers[
idx].attention.kv_quant_orig_scale.value = t
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
def load_from_gptq_llama(tensorrt_llm_llama,
quant_ckpt_path,
mapping=Mapping(),
dtype="float16"):
tensorrt_llm.logger.info(
'Loading weights from groupwise GPTQ LLaMA safetensors...')
tik = time.time()
if quant_ckpt_path.endswith(".safetensors"):
groupwise_qweight_safetensors = safe_open(quant_ckpt_path,
framework="pt",
device=0)
model_params = {
key: groupwise_qweight_safetensors.get_tensor(key)
for key in groupwise_qweight_safetensors.keys()
}
elif quant_ckpt_path.endswith(".pt"):
model_params = torch.load(quant_ckpt_path,
map_location=torch.device('cpu'))
else:
assert False, "Quantized checkpoint format not supported!"
def unpack_int32_into_int8(w_packed):
# Unpack inputs packed in int32/float32 into uint4 and store them in int8 format
w_packed_int4x2 = w_packed.contiguous().view(torch.uint8)
w_unpacked = torch.zeros(w_packed_int4x2.shape[0],
w_packed_int4x2.shape[1] * 2,
dtype=torch.int8)
w_unpacked[:, ::2] = w_packed_int4x2 % 16
w_unpacked[:, 1::2] = w_packed_int4x2 // 16
return w_unpacked.contiguous()
def preprocess_groupwise_weight_params(weight_name,
qweight_int32=None,
qzeros_int32=None,
scales_fp16=None):
if weight_name is not None:
qweight_int32 = model_params[weight_name].cpu()
qzeros_int32 = model_params[weight_name[:-7] + 'qzeros'].cpu()
scales_fp16 = model_params[weight_name[:-7] + 'scales'].cpu()
UINT4_TO_INT4_FLAG = 1
GPTQ_FLAG = 1
packer = torch.ops.fastertransformer.pack_int8_tensor_to_packed_int4
preprocessor = torch.ops.fastertransformer.preprocess_weights_for_mixed_gemm
qweight_unpacked_int8 = unpack_int32_into_int8(
qweight_int32.T).T.contiguous() - 8
qweight_interleaved = preprocessor(packer(qweight_unpacked_int8),
torch.quint4x2).view(torch.float32)
# zeros = zeros * scales
qzeros_unpacked_int32 = unpack_int32_into_int8(qzeros_int32)
zeros_x_scales_fp16 = (-qzeros_unpacked_int32 + 8 * UINT4_TO_INT4_FLAG -
GPTQ_FLAG) * scales_fp16
zeros_x_scales_fp16 = zeros_x_scales_fp16.half()
# return processed interleaved weight, original scales and zeros * scales
return qweight_interleaved.contiguous(), scales_fp16.contiguous(
), zeros_x_scales_fp16.contiguous()
layer_ids = [
extract_layer_idx(key) for key in groupwise_qweight_safetensors.keys()
]
layer_ids = [
int(layer_idx) for layer_idx in layer_ids if layer_idx is not None
]
num_hidden_layers = max(layer_ids) + 1
num_kv_heads = tensorrt_llm_llama.num_kv_heads
mha_mode = (num_kv_heads == tensorrt_llm_llama.num_heads)
suffixs = ['qweight', 'qzeros', 'scales']
layers_per_pipeline_stage = num_hidden_layers // mapping.pp_size
layers_range = list(
range(mapping.pp_rank * layers_per_pipeline_stage,
(mapping.pp_rank + 1) * layers_per_pipeline_stage, 1))
for l in layers_range:
prefix = f'model.layers.{l}.self_attn.'
split_qkv_suf = []
for suf in suffixs:
q_part = model_params[prefix + 'q_proj.' + suf].cpu()
k_part = model_params[prefix + 'k_proj.' + suf].cpu()
v_part = model_params[prefix + 'v_proj.' + suf].cpu()
qkv_part = torch.cat([q_part, k_part, v_part], dim=0)
dim = qkv_part.shape
qkv_part = qkv_part.reshape(3, dim[0] // 3, dim[1])
split_qkv = qkv_part.split(dim[1] // mapping.tp_size,
dim=2)[mapping.tp_rank]
split_qkv = torch.cat([
split_qkv[0, :, :].squeeze(0), split_qkv[1, :, :].squeeze(0),
split_qkv[2, :, :].squeeze(0)
],
dim=1)
split_qkv_suf.append(split_qkv)
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
None, split_qkv_suf[0], split_qkv_suf[1], split_qkv_suf[2])
idx = l - mapping.pp_rank * layers_per_pipeline_stage
tensorrt_llm_llama.layers[
idx].attention.qkv.qweight.value = th_qweight.numpy()
tensorrt_llm_llama.layers[
idx].attention.qkv.scale.value = th_zero.numpy()
tensorrt_llm_llama.layers[
idx].attention.qkv.zero.value = th_scale.numpy()
torch_dtype = str_dtype_to_torch(dtype)
for k, v in model_params.items():
if isinstance(v, list):
v = [torch_to_numpy(vv.to(torch_dtype).detach().cpu()) for vv in v]
else:
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
if 'model.embed_tokens.weight' in k:
if mapping.is_first_pp_rank():
tensorrt_llm_llama.vocab_embedding.weight.value = v
elif 'model.norm.weight' in k:
if mapping.is_last_pp_rank():
tensorrt_llm_llama.ln_f.weight.value = v
elif 'lm_head.weight' in k:
if mapping.is_last_pp_rank():
tensorrt_llm_llama.lm_head.weight.value = np.ascontiguousarray(
split(v, mapping.tp_size, mapping.tp_rank))
else:
layer_idx = extract_layer_idx(k)
if layer_idx is None:
continue
idx = int(layer_idx)
if idx not in layers_range:
continue
idx = idx - mapping.pp_rank * layers_per_pipeline_stage
if 'input_layernorm.weight' in k:
tensorrt_llm_llama.layers[idx].input_layernorm.weight.value = v
elif 'post_attention_layernorm.weight' in k:
tensorrt_llm_llama.layers[idx].post_layernorm.weight.value = v
elif 'self_attn.o_proj.qweight' in k:
split_v_suf = []
for suf in suffixs:
v = model_params[k[:-7] + suf].cpu()
split_v = v.split(v.shape[0] // mapping.tp_size,
dim=0)[mapping.tp_rank]
split_v_suf.append(split_v)
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
tensorrt_llm_llama.layers[
idx].attention.dense.qweight.value = th_qweight.numpy()
tensorrt_llm_llama.layers[
idx].attention.dense.scale.value = th_zero.numpy()
tensorrt_llm_llama.layers[
idx].attention.dense.zero.value = th_scale.numpy()
elif 'mlp.up_proj.qweight' in k:
split_v_suf = []
for suf in suffixs:
v = model_params[k[:-7] + suf].cpu()
split_v = v.split(v.shape[1] // mapping.tp_size,
dim=1)[mapping.tp_rank]
split_v_suf.append(split_v)
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
tensorrt_llm_llama.layers[