forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hf_llama_convert.py
335 lines (284 loc) · 13.3 KB
/
hf_llama_convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Convert huggingface GPT model. Use https://huggingface.co/gpt2 as demo.
'''
import argparse
import configparser
import os
from pathlib import Path
import torch
import torch.multiprocessing as multiprocessing
from convert import split_and_save_weight, str_to_np_dtype
from smoothquant import (capture_activation_range, smooth_gemm,
smooth_gemm_fc1_gate)
from tqdm import tqdm
from transformers import LlamaForCausalLM, LlamaTokenizer
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
def merge_qkv_scales(q_name, hf_model, scales, llama_qkv_para):
layer_name_q = q_name.replace(".weight", "")
layer_name_k = layer_name_q.replace("q_proj", "k_proj")
layer_name_v = layer_name_q.replace("q_proj", "v_proj")
layer_name_qkv = layer_name_q.replace("q_proj", "qkv_proj")
q = hf_model.state_dict()[layer_name_q + ".weight"]
k = hf_model.state_dict()[layer_name_k + ".weight"]
v = hf_model.state_dict()[layer_name_v + ".weight"]
weight = torch.cat([q, k, v], dim=0)
scales[layer_name_qkv]["x"] = scales[layer_name_q]["x"]
scales[layer_name_qkv]["w"] = weight.abs().max(dim=1)[0]
print(scales[layer_name_q])
scales[layer_name_qkv]["y"] = torch.cat([
scales[layer_name_q]["y"], scales[layer_name_k]["y"],
scales[layer_name_v]["y"]
],
dim=0)
llama_qkv_para[layer_name_qkv] = weight.transpose(0, 1)
@torch.no_grad()
def smooth_llama_model(model, scales, alpha, llama_qkv_para, llama_smoother):
# Smooth the activation and weights with smoother = $\diag{s}$
for name, module in model.named_modules():
if not isinstance(module, LlamaDecoderLayer):
continue
# qkv_proj
layer_name_q = name + ".self_attn.q_proj"
layer_name_k = name + ".self_attn.k_proj"
layer_name_v = name + ".self_attn.v_proj"
layer_name_qkv = name + ".self_attn.qkv_proj"
weight = torch.cat([
module.self_attn.q_proj.weight, module.self_attn.k_proj.weight,
module.self_attn.v_proj.weight
],
dim=0)
smoother = smooth_gemm(weight, scales[layer_name_q]["x"],
module.input_layernorm.weight, None, alpha)
scales[layer_name_qkv]["x"] = scales[layer_name_q]["x"] / smoother
scales[layer_name_qkv]["w"] = weight.abs().max(dim=1)[0]
scales[layer_name_qkv]["y"] = torch.cat([
scales[layer_name_q]["y"], scales[layer_name_k]["y"],
scales[layer_name_v]["y"]
],
dim=0)
# see transpose_weights function
llama_qkv_para[layer_name_qkv] = weight.transpose(0, 1)
# =================================================================
layer_name = name + ".self_attn.o_proj"
smoother = smooth_gemm(module.self_attn.o_proj.weight,
scales[layer_name]["x"], None, None, alpha)
llama_smoother[layer_name] = smoother.float()
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.self_attn.o_proj.weight.abs().max(
dim=1)[0]
# ==================================================================
fc1_layer_name = name + ".mlp.gate_proj"
gate_layer_name = name + ".mlp.up_proj"
smoother = smooth_gemm_fc1_gate(module.mlp.gate_proj.weight,
module.mlp.up_proj.weight,
scales[fc1_layer_name]["x"],
module.post_attention_layernorm.weight,
None, alpha)
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
scales[fc1_layer_name]["w"] = module.mlp.gate_proj.weight.abs().max(
dim=1)[0]
scales[gate_layer_name]["x"] = scales[gate_layer_name]["x"] / smoother
scales[gate_layer_name]["w"] = module.mlp.up_proj.weight.abs().max(
dim=1)[0]
# ==================================================================
layer_name = name + ".mlp.down_proj"
smoother = smooth_gemm(module.mlp.down_proj.weight,
scales[layer_name]["x"], None, None, alpha)
llama_smoother[layer_name] = smoother.float()
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.mlp.down_proj.weight.abs().max(
dim=1)[0]
def gpt_to_ft_name(orig_name):
global_ft_weights = {
"model.embed_tokens.weight": 'vocab_embedding.weight',
"model.norm.weight": 'ln_f.weight',
"lm_head.weight": 'lm_head.weight',
}
if orig_name in global_ft_weights:
return global_ft_weights[orig_name]
_, _, layer_id, *weight_name = orig_name.split(".")
layer_id = int(layer_id)
weight_name = ".".join(weight_name)
if weight_name == 'self_attn.q_proj.weight':
return f"layers.{layer_id}.attention.query_key_value.weight"
elif weight_name == 'self_attn.k_proj.weight' or weight_name == 'self_attn.v_proj.weight':
return f"layers.{layer_id}.attention.kv.weight"
per_layer_weights = {
"input_layernorm.weight": "input_layernorm.weight",
"self_attn.o_proj.weight": "attention.dense.weight",
"mlp.gate_proj.weight": "mlp.fc.weight",
"mlp.down_proj.weight": "mlp.proj.weight",
"mlp.up_proj.weight": "mlp.gate.weight",
"post_attention_layernorm.weight": "post_layernorm.weight",
}
return f"layers.{layer_id}.{per_layer_weights[weight_name]}"
# LLaMA uses nn.Linear for these following ops whose weight matrix is transposed compared to gpt2.
# In order to use the preprocess codes of gpt2, we transpose them firstly.
def transpose_weights(hf_name, param):
weight_to_transpose = ["o_proj", "gate_proj", "down_proj", "up_proj"]
if any([k in hf_name for k in weight_to_transpose]):
if len(param.shape) == 2:
param = param.transpose(0, 1)
return param
def hf_gpt_converter(args):
infer_tp = args.tensor_parallelism
saved_dir = Path(args.out_dir) / f"{infer_tp}-gpu"
saved_dir.mkdir(parents=True, exist_ok=True)
model = LlamaForCausalLM.from_pretrained(args.in_file, device_map="auto")
act_range = {}
llama_qkv_para = {}
# smoother for inputs of self_attn.o_proj and mlp.down_proj
llama_smoother = {}
if args.smoothquant is not None or args.calibrate_kv_cache:
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
"TOKENIZERS_PARALLELISM", "false")
act_range = capture_activation_range(
model,
LlamaTokenizer.from_pretrained(args.in_file, padding_side='left'))
if args.smoothquant is not None:
smooth_llama_model(model, act_range, args.smoothquant,
llama_qkv_para, llama_smoother)
config = configparser.ConfigParser()
config["llama"] = {}
for key in vars(args):
config["llama"][key] = f"{vars(args)[key]}"
for k, v in vars(model.config).items():
config["llama"][k] = f"{v}"
config["llama"]["weight_data_type"] = args.storage_type
config["llama"]["multi_query_mode"] = str(args.multi_query_mode)
with open(saved_dir / "config.ini", 'w') as configfile:
config.write(configfile)
storage_type = str_to_np_dtype(args.storage_type)
global_ft_weights = [
'vocab_embedding.weight', 'ln_f.weight', 'lm_head.weight'
]
int8_outputs = None
if args.calibrate_kv_cache:
int8_outputs = "kv_cache_only"
if args.smoothquant is not None:
int8_outputs = "all"
starmap_args = []
for name, param in model.named_parameters():
if "weight" not in name and "bias" not in name:
continue
ft_name = gpt_to_ft_name(name)
if name.replace(".weight", "") in llama_smoother.keys():
smoother = llama_smoother[name.replace(".weight", "")]
smoother = smoother.detach().cpu().numpy()
starmap_args.append(
(0, saved_dir, infer_tp,
f"{ft_name}.smoother".replace(".weight", ""), smoother, None, {
"int8_outputs": int8_outputs,
"multi_query_mode": args.multi_query_mode,
"local_dim": None,
}))
param = transpose_weights(name, param)
param = param.detach().cpu().numpy().astype(storage_type)
if ft_name in global_ft_weights:
param.tofile(saved_dir / f"{ft_name}.bin")
elif ft_name.split('.')[-2] == 'query_key_value':
# Is there other ways to get local_dim? local_dim = hidden_size in llama2
local_dim = model.config.hidden_size if args.multi_query_mode else None
if args.smoothquant is None:
merge_qkv_scales(name, model, act_range, llama_qkv_para)
qkv = (0, saved_dir, infer_tp, ft_name,
llama_qkv_para.get(
name.replace(".weight", "").replace(
".q_proj",
".qkv_proj")).cpu().numpy().astype(storage_type),
act_range.get(
name.replace(".weight",
"").replace(".q_proj", ".qkv_proj")), {
"int8_outputs": int8_outputs,
"multi_query_mode":
args.multi_query_mode,
"local_dim": local_dim,
})
starmap_args.append(qkv)
elif ft_name.split('.')[-2] == 'kv':
continue
else:
starmap_args.append((0, saved_dir, infer_tp, ft_name, param,
act_range.get(name.replace(".weight", "")), {
"int8_outputs": int8_outputs,
"multi_query_mode": args.multi_query_mode,
"local_dim": None,
}))
starmap_args = tqdm(starmap_args, desc="saving weights")
if args.processes > 1:
with multiprocessing.Pool(args.processes) as pool:
pool.starmap(split_and_save_weight, starmap_args)
else:
# simpler for debug situations
for starmap_arg in starmap_args:
split_and_save_weight(*starmap_arg)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
parser = argparse.ArgumentParser(
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--out-dir',
'-o',
type=str,
help='file name of output directory',
required=True)
parser.add_argument('--in-file',
'-i',
type=str,
help='file name of input checkpoint file',
required=True)
parser.add_argument('--tensor-parallelism',
'-tp',
type=int,
help='Requested tensor parallelism for inference',
default=1)
parser.add_argument(
"--processes",
"-p",
type=int,
help="How many processes to spawn for conversion (default: 4)",
default=4)
parser.add_argument(
"--calibrate-kv-cache",
"-kv",
action="store_true",
help=
"Generate scaling factors for KV cache. Used for storing KV cache in int8."
)
parser.add_argument(
"--smoothquant",
"-sq",
type=float,
default=None,
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
" to Smoothquant the model, and output int8 weights."
" A good first try is 0.5. Must be in [0, 1]")
parser.add_argument("--storage-type",
"-t",
type=str,
default="fp32",
choices=["fp32", "fp16"])
parser.add_argument("--multi-query-mode",
action="store_true",
help="Use multi-query-attention.")
args = parser.parse_args()
print("\n=============== Argument ===============")
for key in vars(args):
print("{}: {}".format(key, vars(args)[key]))
print("========================================")
assert (args.calibrate_kv_cache or args.smoothquant), \
"Either INT8 kv cache or SmoothQuant must be enabled for this script. Otherwise you can directly build engines from HuggingFace checkpoints, no need to do this FT-format conversion. "
hf_gpt_converter(args)