-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_SMOMultistartPerturbation.py
138 lines (106 loc) · 4.62 KB
/
test_SMOMultistartPerturbation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
import timeit as tm
import StQPAlgorithmSMOMultistartPerturbation as stqpSMOMultistartPerturbation
import statistics
#prob_file_name = "Problems/Dataset_Generic/Problem_3x3(0.75).txt"
prob_file_name = "Problems/Dataset_Generic/Problem_200x200(0.75)_2.txt"
#prob_file_name = "Problems/Dataset_BSU/BSU_8x8.txt"
Q = np.loadtxt(prob_file_name)
n = Q.shape[0]
c = np.zeros(n, dtype=float)
problemSMO = stqpSMOMultistartPerturbation.SMOAlgorithm(n, Q, c)
"""
start_time = tm.default_timer()
#solution, counts = problemSMO.solve_problem_multistart_perturbation()
#solution = problemSMO.solve_problem_multistart_ones()
#solution, counts = problemSMO.solve_problem_multistart_random_points(20)
solution = problemSMO.solve_problem_multistart_random_points_perturbation(10, 10, 0.2)
stop_time = tm.default_timer()
print("\nPROBLEM:", prob_file_name.split("/")[2][:-4])
print("Objective function minimum:", solution)
print("Minimization time:", stop_time - start_time)
#print(counts)
"""
"""
obj_func_minimums = []
min_times = []
for i in range(10):
print("Iterazione:", i)
start_time = tm.default_timer()
#solution, counts = problemSMO.solve_problem_multistart_random_points(10)
solution = problemSMO.solve_problem_multistart_random_points_perturbation(10, 10, 0.2)
stop_time = tm.default_timer()
obj_func_minimums.append(solution)
time_exe = stop_time - start_time
min_times.append(time_exe)
obj_func_minimum = min(obj_func_minimums)
#index = obj_func_minimums.index(obj_func_minimum)
#min_time = min_times[index]
indexes = [i for i, x in enumerate(obj_func_minimums) if x == obj_func_minimum]
minimums_times = []
for i in indexes:
minimums_times.append(min_times[i])
min_time = min(minimums_times)
print("\nPROBLEM:", prob_file_name.split("/")[2][:-4])
print("Objective function minimum:", obj_func_minimum)
print("Minimization time:", min_time)
print("Numero di volte corretto:", len(minimums_times))
"""
"""
params = [[10, 10, 0.1], [10, 10, 0.15], [10, 10, 0.2], [15, 15, 0.1], [15, 15, 0.15], [15, 15, 0.2], [20, 10, 0.1],
[10, 20, 0.1], [20, 10, 0.2], [10, 20, 0.2]]
for param in params:
obj_func_minimums = []
min_times = []
for i in range(250):
print("Iterazione:", i)
start_time = tm.default_timer()
#solution, counts = problemSMO.solve_problem_multistart_random_points(10)
solution = problemSMO.solve_problem_multistart_random_points_perturbation(param[0], param[1], param[2])
stop_time = tm.default_timer()
obj_func_minimums.append(solution)
time_exe = stop_time - start_time
min_times.append(time_exe)
obj_func_minimum = min(obj_func_minimums)
#index = obj_func_minimums.index(obj_func_minimum)
#min_time = min_times[index]
indexes = [i for i, x in enumerate(obj_func_minimums) if x == obj_func_minimum]
minimums_times = []
for i in indexes:
minimums_times.append(min_times[i])
min_time = min(minimums_times)
print("\nPROBLEM:", prob_file_name.split("/")[2][:-4])
print("Parametri --> Nmax: {}, Mmax: {}, eps: {}".format(param[0], param[1], param[2]))
print("Objective function minimum:", obj_func_minimum)
print("Minimization time:", min_time)
print("Numero di volte corretto:", len(minimums_times))
"""
#params = [10, 15, 20]
params = [[10, 10], [10, 15], [10, 20], [15, 10], [15, 15], [15, 20], [20, 10], [20, 15], [20, 20]]
for param in params:
obj_func_minimums = []
min_times = []
for i in range(100):
#print("Iterazione:", i)
start_time = tm.default_timer()
#solution = problemSMO.solve_problem_multistart_random_points(param)
solution = problemSMO.solve_problem_multistart_random_points_perturbation(param[0], param[1])
stop_time = tm.default_timer()
time_exe = stop_time - start_time
obj_func_minimums.append(solution)
min_times.append(time_exe)
obj_func_minimum = min(obj_func_minimums)
#index = obj_func_minimums.index(obj_func_minimum)
#min_time = min_times[index]
indexes = [i for i, x in enumerate(obj_func_minimums) if format(x, '.6f') == format(obj_func_minimum, '.6f')]
minimums_times = []
for i in indexes:
minimums_times.append(min_times[i])
#min_time = min(minimums_times)
avg_time = statistics.mean(minimums_times)
print("\nPROBLEM:", prob_file_name.split("/")[2][:-4])
print("Parametri --> Nmax: {}, Mmax: {}".format(param[0], param[1]))
#print("Parametri --> Nmax: {}".format(param))
print("Objective function minimum:", obj_func_minimum)
print("Avg minimization time:", avg_time)
print("Numero di volte corretto:", len(minimums_times))