-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
295 lines (234 loc) · 12.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""
Alternative implementation for Deep Denoising Diffusion Model.
author: Gabriel Carvalho Santana
"""
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
class ResidualBlock(tf.keras.layers.Layer):
def __init__(self, filters, change_filters, attention=False, **kwargs):
super().__init__(**kwargs)
self.main_convolutions = [tf.keras.layers.GroupNormalization(32),
tf.keras.layers.Activation('swish'),
tf.keras.layers.Conv2D(filters, kernel_size=1, padding='same'),
tf.keras.layers.Conv2D(filters, kernel_size=3, padding='same'),
tf.keras.layers.GroupNormalization(32),
tf.keras.layers.Activation('swish'),
tf.keras.layers.Conv2D(filters, kernel_size=1, padding='same'),
tf.keras.layers.Conv2D(filters, kernel_size=3, padding='same')]
if change_filters:
self.sec_convolution = tf.keras.layers.Conv2D(filters, kernel_size=1, padding='same')
else:
self.sec_convolution = lambda x: x
if attention:
self.attention_block = [tf.keras.layers.GroupNormalization(32),
tf.keras.layers.MultiHeadAttention(num_heads=32, key_dim=filters, attention_axes=(1, 2))]
else:
self.attention_block = False
def call(self, x):
data = tf.identity(x)
for conv in self.main_convolutions:
data = conv(data)
if self.attention_block:
x = self.attention_block[0](x)
x = self.attention_block[1](x, x)
return data + self.sec_convolution(x)
class TimeEmbedding(tf.keras.layers.Layer):
def __init__(self, channels, **kwargs):
super().__init__(**kwargs)
self.denselayers = [tf.keras.layers.Activation('swish'),
tf.keras.layers.Dense(channels*4),
tf.keras.layers.Activation('swish'),
tf.keras.layers.Dense(channels),
tf.keras.layers.Reshape([1, 1, channels])]
def call(self, x):
for layer in self.denselayers:
x = layer(x)
return x
class ProcessBlock(tf.keras.layers.Layer):
def __init__(self, filters, change_filters, attention=False, **kwargs):
super().__init__(**kwargs)
self.embedding_layer = TimeEmbedding(filters)
self.residual1 = ResidualBlock(filters, True, attention)
self.residual2 = ResidualBlock(filters, change_filters, attention)
self.residual3 = ResidualBlock(filters, change_filters, attention)
self.residual4 = ResidualBlock(filters, change_filters, attention)
def call(self, x):
x[2] = self.embedding_layer(x[2])
x[0] = self.residual1(x[0])
x[1] = x[0] + self.residual2(x[1]) + self.residual3(x[1])*x[2]
return self.residual4(x[1])
class Model(tf.keras.Model):
def __init__(self, **kwargs):
super().__init__()
self.time_process = [tf.keras.layers.Dense(1024),
tf.keras.layers.Activation('swish'),
tf.keras.layers.Dense(1024)]
self.init_conv = [tf.keras.layers.Conv2D(32, kernel_size=1, padding='same'),
ResidualBlock(64, True)]
self.init_seed = [tf.keras.layers.Conv2D(32, kernel_size=1, padding='same'),
ResidualBlock(64, True)]
# ---------------- left ---------------
self.left = [ProcessBlock(128, True),
ProcessBlock(128, False),
ProcessBlock(128, False),
ProcessBlock(128, False),
ProcessBlock(128, False),
ProcessBlock(128, False),
ProcessBlock(256, True, True),
ProcessBlock(256, False, True),
ProcessBlock(256, True, True)]
self.stride_convs = [tf.keras.layers.Conv2D(filters=128, kernel_size=3, padding='same', strides=2),
tf.keras.layers.Conv2D(filters=128, kernel_size=3, padding='same', strides=2),
tf.keras.layers.Conv2D(filters=256, kernel_size=3, padding='same', strides=2),
tf.keras.layers.Conv2D(filters=256, kernel_size=3, padding='same', strides=2)]
# --------------- mid ----------------
self.mid = [ResidualBlock(512, True),
ResidualBlock(512, False)]
# ----------------right----------------
self.right = [ProcessBlock(256, True, True),
ProcessBlock(256, True, True),
ProcessBlock(256, True, True),
ProcessBlock(128, True),
ProcessBlock(128, True),
ProcessBlock(128, True),
ProcessBlock(128, True),
ProcessBlock(128, True),
ProcessBlock(128, True)]
self.stride_transp = [tf.keras.layers.Conv2DTranspose(filters=256, kernel_size=3, padding='same', strides=2),
tf.keras.layers.Conv2DTranspose(filters=256, kernel_size=3, padding='same', strides=2),
tf.keras.layers.Conv2DTranspose(filters=128, kernel_size=3, padding='same', strides=2),
tf.keras.layers.Conv2DTranspose(filters=128, kernel_size=3, padding='same', strides=2)]
self.concat = tf.keras.layers.Concatenate()
self.end = [tf.keras.layers.GroupNormalization(32),
tf.keras.layers.Activation('swish'),
tf.keras.layers.Conv2D(3, kernel_size=1, padding='same')]
def call(self, x):
seed, x_input, x_ts = x[0], x[1], x[2]
left_outputs = []
for layer in self.time_process:
x_ts = layer(x_ts)
x_input = self.init_conv[1](self.init_conv[0](x_input))
seed = self.init_seed[1](self.init_seed[0](seed))
z = 0
for idx in range(0, len(self.left), 3):
if idx != 0:
x_input = self.stride_convs[z](x_input)
seed = self.stride_convs[z+1](seed)
z += 2
x_input = self.left[idx]([seed, x_input, x_ts])
left_outputs.append(x_input)
x_input = self.left[idx+1]([seed, x_input, x_ts])
left_outputs.append(x_input)
x_input = self.left[idx+2]([seed, x_input, x_ts])
left_outputs.append(x_input)
x = self.mid[0](x_input)
for layer in self.mid[1:]:
x = layer(x)
z = 0
for idx in range(0, len(self.right), 3):
if idx != 0:
x = self.stride_transp[z](x)
seed = self.stride_transp[z+1](seed)
z += 2
k = self.concat([x, left_outputs.pop()])
x = self.right[idx]([seed, k, x_ts])
k = self.concat([x, left_outputs.pop()])
x = self.right[idx+1]([seed, k, x_ts])
k = self.concat([x, left_outputs.pop()])
x = self.right[idx+2]([seed, k, x_ts])
for end_layers in self.end:
x = end_layers(x)
return x
def complete_images(self, seed, h, w):
noise = np.random.random(size=(h*w, IMG_DIMS[1], IMG_DIMS[0]//2, 3))
for i in trange(timesteps):
noise = self.predict([seed, noise, np.reshape(np.full((h*w,), i), (-1,1))], verbose=0, batch_size=16)
return np.concatenate([seed, noise], axis=2)
class DataGenerator(tf.keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, data, batch_size, shuffle=True):
self.data = data # array of strings with original images name with directory
self.batch_size = batch_size #images per batch
self.shuffle = shuffle # true or false to shuffle data after any epochs
self.on_epoch_end() # call of the function
def __forward_noise(self, x, t):
a = time_bar[t] # base on t
b = time_bar[t + 1] # image for t + 1
noise = np.random.random(size=(x.shape[0], IMG_DIMS[1], IMG_DIMS[0]//2, 3)) # noise mask
a = a.reshape((-1, 1, 1, 1))
b = b.reshape((-1, 1, 1, 1))
img_a = x * (1 - a) + noise * a
img_b = x * (1 - b) + noise * b
return img_a, img_b
def __generate_ts(self, num):
return np.random.randint(0, timesteps, size=num)
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.data) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
indexes_for_batch = [k for k in indexes]
# Generate data
X, y = self.__data_generation(indexes_for_batch)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.data))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, indexes_for_batch):
'Generates data containing batch_size samples'
images_for_train = np.array([self.data[i] for i in indexes_for_batch])
timesteps = self.__generate_ts(self.batch_size)
imgs_t1, imgs_t2 = self.__forward_noise(images_for_train[:,:,IMG_DIMS[0]//2:,:], timesteps)
X = [images_for_train[:,:,0:IMG_DIMS[0]//2,:], imgs_t1, np.array(timesteps).reshape(-1, 1)]
y = imgs_t2
return X, y
class DataGenerator(tf.keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, list_IDs, batch_size, dim_img, shuffle=True):
self.list_IDs = list_IDs # array of strings with original images name with directory
self.batch_size = batch_size #images per batch
self.dim_img = dim_img # tuple with width and height of image like (192, 256)
self.shuffle = shuffle # true or false to shuffle data after any epochs
self.on_epoch_end() # call of the function
def __forward_noise(self, x, t):
a = time_bar[t] # base on t
b = time_bar[t + 1] # image for t + 1
noise = np.random.random(size=(x.shape[0], IMG_SIZE, IMG_SIZE//2, 3)) # noise mask
a = a.reshape((-1, 1, 1, 1))
b = b.reshape((-1, 1, 1, 1))
img_a = x * (1 - a) + noise * a
img_b = x * (1 - b) + noise * b
return img_a, img_b
def __generate_ts(self, num):
return np.random.randint(0, timesteps, size=num)
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
indexes_for_batch = [k for k in indexes]
# Generate data
X, y = self.__data_generation(indexes_for_batch)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, indexes_for_batch):
'Generates data containing batch_size samples'
images_for_train = [cv2.resize(plt.imread(directory + self.list_IDs[i]), (self.dim_img, self.dim_img)) for i in indexes_for_batch]
timesteps = self.__generate_ts(self.batch_size)
imgs_t1, imgs_t2 = self.__forward_noise(np.array(images_for_train)[:,:,self.dim_img//2:,:], timesteps)
X = [np.array(images_for_train)[:,:,0:self.dim_img//2,:], imgs_t1, np.array(timesteps).reshape(-1, 1)]
y = imgs_t2
return X, y