-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTheDistanceAssessor.py
908 lines (718 loc) · 43.7 KB
/
TheDistanceAssessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
import cv2
import os
import time
import json
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import matplotlib.path as mplPath
import matplotlib.patches as patches
from ultralyticsplus import YOLO
from scripts.test_filtered_cls import load, load_model, process
PATH_jpgs = 'RailNet_DT/assets/rs19val/jpgs/test'
PATH_model_seg = 'RailNet_DT/assets/models_pretrained/segformer/SegFormer_B3_1024_finetuned.pth'
PATH_model_det = 'RailNet_DT/assets/models_pretrained/ultralyticsplus/yolov8s'
PATH_base = 'RailNet_DT/assets/pilsen_railway_dataset/'
eda_path = "RailNet_DT/assets/pilsen_railway_dataset/eda_table.table.json"
data_json = json.load(open(eda_path, 'r'))
def load_yolo(PATH_model):
model = YOLO(PATH_model)
model.overrides['conf'] = 0.25 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
return model
def find_extreme_y_values(arr, values=[0, 6]):
"""
Optimized function to find the lowest and highest y-values (row indices) in a 2D array where 0 or 6 appears.
Parameters:
- arr: The input 2D NumPy array.
- values: The values to search for (default is [0, 6]).
Returns:
A tuple (lowest_y, highest_y) representing the lowest and highest y-values. If values are not found, returns None.
"""
mask = np.isin(arr, values)
rows_with_values = np.any(mask, axis=1)
y_indices = np.nonzero(rows_with_values)[0] # Directly finding non-zero (True) indices
if y_indices.size == 0:
return None, None # Early return if values not found
return y_indices[0], y_indices[-1]
def find_nearest_pairs(arr1, arr2):
# Convert lists to numpy arrays for vectorized operations
arr1_np = np.array(arr1)
arr2_np = np.array(arr2)
# Determine which array is shorter
if len(arr1_np) < len(arr2_np):
base_array, compare_array = arr1_np, arr2_np
else:
base_array, compare_array = arr2_np, arr1_np
paired_base = []
paired_compare = []
# Mask to keep track of paired elements
paired_mask = np.zeros(len(compare_array), dtype=bool)
for item in base_array:
# Calculate distances from the current item to all items in the compare_array
distances = np.linalg.norm(compare_array - item, axis=1)
nearest_index = np.argmin(distances)
paired_base.append(item)
paired_compare.append(compare_array[nearest_index])
# Mark the paired element to exclude it from further pairing
paired_mask[nearest_index] = True
# Check if all elements from the compare_array have been paired
if paired_mask.all():
break
paired_base = np.array(paired_base)
paired_compare = compare_array[paired_mask]
return (paired_base, paired_compare) if len(arr1_np) < len(arr2_np) else (paired_compare, paired_base)
def filter_crossings(image, edges_dict):
filtered_edges = {}
for key, values in edges_dict.items():
merged = [values[0]]
for start, end in values[1:]:
if start - merged[-1][1] < 50:
key_up = max([0, key-10])
key_down = min([image.shape[0]-1, key+10])
if key_up == 0:
key_up = key+20
if key_down == image.shape[0]-1:
key_down = key-20
edges_to_test_slope1 = robust_edges(image, [key_up], values=[0, 6], min_width=19)
edges_to_test_slope2 = robust_edges(image, [key_down], values=[0, 6], min_width=19)
values1, edges_to_test_slope1 = find_nearest_pairs(values, edges_to_test_slope1)
values2, edges_to_test_slope2 = find_nearest_pairs(values, edges_to_test_slope2)
differences_y = []
for i, value in enumerate(values1):
if start in value:
idx = list(value).index(start)
try:
differences_y.append(abs(start-edges_to_test_slope1[i][idx]))
except:
pass
if merged[-1][1] in value:
idx = list(value).index(merged[-1][1])
try:
differences_y.append(abs(merged[-1][1]-edges_to_test_slope1[i][idx]))
except:
pass
for i, value in enumerate(values2):
if start in value:
idx = list(value).index(start)
try:
differences_y.append(abs(start-edges_to_test_slope2[i][idx]))
except:
pass
if merged[-1][1] in value:
idx = list(value).index(merged[-1][1])
try:
differences_y.append(abs(merged[-1][1]-edges_to_test_slope2[i][idx]))
except:
pass
if any(element > 30 for element in differences_y):
merged[-1] = (merged[-1][0], end)
else:
merged.append((start, end))
else:
merged.append((start, end))
filtered_edges[key] = merged
return filtered_edges
def robust_edges(image, y_levels, values=[0, 6], min_width=19):
for y in y_levels:
row = image[y, :]
mask = np.isin(row, values).astype(int)
padded_mask = np.pad(mask, (1, 1), 'constant', constant_values=0)
diff = np.diff(padded_mask)
starts = np.where(diff == 1)[0]
ends = np.where(diff == -1)[0] - 1
# Filter sequences based on the minimum width criteria
filtered_edges = [(start, end) for start, end in zip(starts, ends) if end - start + 1 >= min_width]
filtered_edges = [(start, end) for start, end in filtered_edges if 0 not in (start, end) and 1919 not in (start, end)]
return filtered_edges
def find_edges(image, y_levels, values=[0, 6], min_width=19):
"""
Find start and end positions of continuous sequences of specified values at given y-levels in a 2D array,
filtering for sequences that meet or exceed a specified minimum width.
Parameters:
- arr: 2D NumPy array to search within.
- y_levels: List of y-levels (row indices) to examine.
- values: Values to search for (default is [0, 6]).
- min_width: Minimum width of sequences to be included in the results.
Returns:
A dict with y-levels as keys and lists of (start, end) tuples for each sequence found in that row that meets the width criteria.
"""
edges_dict = {}
for y in y_levels:
row = image[y, :]
mask = np.isin(row, values).astype(int)
padded_mask = np.pad(mask, (1, 1), 'constant', constant_values=0)
diff = np.diff(padded_mask)
starts = np.where(diff == 1)[0]
ends = np.where(diff == -1)[0] - 1
# Filter sequences based on the minimum width criteria
filtered_edges = [(start, end) for start, end in zip(starts, ends) if end - start + 1 >= min_width]
filtered_edges = [(start, end) for start, end in filtered_edges if 0 not in (start, end) and 1919 not in (start, end)]
edges_with_guard_rails = []
for edge in filtered_edges:
cutout_left = image[y,edge[0]-50:edge[0]][::-1]
cutout_right = image[y,edge[1]:edge[1]+50]
not_ones = np.where(cutout_left != 1)[0]
if len(not_ones) > 0 and not_ones[0] > 0:
last_one_index = not_ones[0] - 1
edge = (edge[0] - last_one_index,) + edge[1:]
else:
last_one_index = None if len(not_ones) == 0 else not_ones[-1] - 1
not_ones = np.where(cutout_right != 1)[0]
if len(not_ones) > 0 and not_ones[0] > 0:
last_one_index = not_ones[0] - 1
edge = (edge[0], edge[1] - last_one_index) + edge[2:]
else:
last_one_index = None if len(not_ones) == 0 else not_ones[-1] - 1
edges_with_guard_rails.append(edge)
edges_dict[y] = edges_with_guard_rails
edges_dict = {k: v for k, v in edges_dict.items() if v}
edges_dict = filter_crossings(image, edges_dict)
return edges_dict
def find_rails(arr, y_levels, values=[9, 10], min_width=5):
edges_all = []
for y in y_levels:
row = arr[y, :]
mask = np.isin(row, values).astype(int)
padded_mask = np.pad(mask, (1, 1), 'constant', constant_values=0)
diff = np.diff(padded_mask)
starts = np.where(diff == 1)[0]
ends = np.where(diff == -1)[0] - 1
# Filter sequences based on the minimum width criteria
filtered_edges = [(start, end) for start, end in zip(starts, ends) if end - start + 1 >= min_width]
filtered_edges = [(start, end) for start, end in filtered_edges if 0 not in (start, end) and 1919 not in (start, end)]
edges_all = filtered_edges
return edges_all
def mark_edges(arr, edges_dict, mark_value=30):
"""
Marks a 5x5 zone around the edges found in the array with a specific value.
Parameters:
- arr: The original 2D NumPy array.
- edges_dict: A dictionary with y-levels as keys and lists of (start, end) tuples for edges.
- mark_value: The value used to mark the edges.
Returns:
The modified array with marked zones.
"""
marked_arr = np.copy(arr) # Create a copy of the array to avoid modifying the original
offset = 2 # To mark a 5x5 area, we go 2 pixels in each direction from the center
for y, edges in edges_dict.items():
for start, end in edges:
# Mark a 5x5 zone around the start and end positions
for dy in range(-offset, offset + 1):
for dx in range(-offset, offset + 1):
# Check array bounds before marking
if 0 <= y + dy < marked_arr.shape[0] and 0 <= start + dx < marked_arr.shape[1]:
marked_arr[y + dy, start + dx] = mark_value
if 0 <= y + dy < marked_arr.shape[0] and 0 <= end + dx < marked_arr.shape[1]:
marked_arr[y + dy, end + dx] = mark_value
return marked_arr
def find_rail_sides(img, edges_dict):
left_border = []
right_border = []
for y,xs in edges_dict.items():
rails = find_rails(img, [y], values=[9,10], min_width=5)
left_border_actual = [min(xs)[0],y]
right_border_actual = [max(xs)[1],y]
for zone in rails:
if abs(zone[1]-left_border_actual[0]) < y*0.04: # dynamic treshold
left_border_actual[0] = zone[0]
if abs(zone[0]-right_border_actual[0]) < y*0.04:
right_border_actual[0] = zone[1]
left_border.append(left_border_actual)
right_border.append(right_border_actual)
# removing detected uncontioussness
left_border, flags_l, _ = robust_rail_sides(left_border) # filter outliers
right_border, flags_r, _ = robust_rail_sides(right_border)
return left_border, right_border, flags_l, flags_r
def robust_rail_sides(border, threshold=7):
border = np.array(border)
if border.size > 0:
# delete borders found on the bottom side of the image
border = border[border[:, 1] != 1079]
steps_x = np.diff(border[:, 0])
median_step = np.median(np.abs(steps_x))
threshold_step = np.abs(threshold*np.abs(median_step))
treshold_overcommings = abs(steps_x) > abs(threshold_step)
flags = []
if True not in treshold_overcommings:
return border, flags, []
else:
overcommings_indices = [i for i, element in enumerate(treshold_overcommings) if element == True]
if overcommings_indices and np.all(np.diff(overcommings_indices) == 1):
overcommings_indices = [overcommings_indices[0]]
filtered_border = border
previously_deleted = []
for i in overcommings_indices:
for item in previously_deleted:
if item[0] < i:
i -= item[1]
first_part = filtered_border[:i+1]
second_part = filtered_border[i+1:]
if len(second_part)<2:
filtered_border = first_part
previously_deleted.append([i,len(second_part)])
elif len(first_part)<2:
filtered_border = second_part
previously_deleted.append([i,len(first_part)])
else:
first_b, _, deleted_first = robust_rail_sides(first_part)
second_b, _, _ = robust_rail_sides(second_part)
filtered_border = np.concatenate((first_b,second_b), axis=0)
if deleted_first:
for deleted_item in deleted_first:
if deleted_item[0]<=i:
i -= deleted_item[1]
flags.append(i)
return filtered_border, flags, previously_deleted
else:
return border, [], []
def find_dist_from_edges(id_map, image, edges_dict, left_border, right_border, real_life_width_mm, real_life_target_mm, mark_value=30):
"""
Mark regions representing a real-life distance (e.g., 2 meters) to the left and right from the furthest edges.
Parameters:
- arr: 2D NumPy array representing the id_map.
- edges_dict: Dictionary with y-levels as keys and lists of (start, end) tuples for edges.
- real_life_width_mm: The real-world width in millimeters that the average sequence width represents.
- real_life_target_mm: The real-world distance in millimeters to mark from the edges.
Returns:
- A NumPy array with the marked regions.
"""
# Calculate the rail widths
diffs_widths = {k: sum(e-s for s, e in v) / len(v) for k, v in edges_dict.items() if v}
diffs_width = {k: max(e-s for s, e in v) for k, v in edges_dict.items() if v}
# Pixel to mm scale factor
scale_factors = {k: real_life_width_mm / v for k, v in diffs_width.items()}
# Converting the real-life target distance to pixels
target_distances_px = {k: int(real_life_target_mm / v) for k, v in scale_factors.items()}
# Mark the regions representing the target distance to the left and right from the furthest edges
end_points_left = {}
region_levels_left = []
for point in left_border:
min_edge = point[0]
# Ensure we stay within the image bounds
#left_mark_start = max(0, min_edge - int(target_distances_px[point[1]]))
left_mark_start = min_edge - int(target_distances_px[point[1]])
end_points_left[point[1]] = left_mark_start
# Left region points
if left_mark_start < min_edge:
y_values = np.arange(left_mark_start, min_edge)
x_values = np.full_like(y_values, point[1])
region_line = np.column_stack((x_values, y_values))
region_levels_left.append(region_line)
end_points_right = {}
region_levels_right = []
for point in right_border:
max_edge = point[0]
# Ensure we stay within the image bounds
right_mark_end = min(id_map.shape[1], max_edge + int(target_distances_px[point[1]]))
if right_mark_end != id_map.shape[1]:
end_points_right[point[1]] = right_mark_end
# Right region points
if max_edge < right_mark_end:
y_values = np.arange(max_edge, right_mark_end)
x_values = np.full_like(y_values, point[1])
region_line = np.column_stack((x_values, y_values))
region_levels_right.append(region_line)
return id_map, end_points_left, end_points_right, region_levels_left, region_levels_right
def bresenham_line(x0, y0, x1, y1):
"""
Generate the coordinates of a line from (x0, y0) to (x1, y1) using Bresenham's algorithm.
"""
line = []
dx = abs(x1 - x0)
dy = -abs(y1 - y0)
sx = 1 if x0 < x1 else -1
sy = 1 if y0 < y1 else -1
err = dx + dy # error value e_xy
while True:
line.append((x0, y0)) # Add the current point to the line
if x0 == x1 and y0 == y1:
break
e2 = 2 * err
if e2 >= dy: # e_xy+e_x > 0
err += dy
x0 += sx
if e2 <= dx: # e_xy+e_y < 0
err += dx
y0 += sy
return line
def interpolate_end_points(end_points_dict, flags):
line_arr = []
ys = list(end_points_dict.keys())
xs = list(end_points_dict.values())
if flags and len(flags) == 1:
pass
elif flags and np.all(np.diff(flags) == 1):
flags = [flags[0]]
for i in range(0, len(ys) - 1):
if i in flags:
continue
y1, y2 = ys[i], ys[i + 1]
x1, x2 = xs[i], xs[i + 1]
line = np.array(bresenham_line(x1, y1, x2, y2))
if np.any(line[:, 0] < 0):
line = line[line[:, 0] > 0]
line_arr = line_arr + list(line)
return line_arr
def extrapolate_line(pixels, image, min_y=None, extr_pixels=10):
"""
Extrapolate a line based on the last segment using linear regression.
Parameters:
- pixels: List of (x, y) tuples representing line pixel coordinates.
- image: 2D numpy array representing the image.
- min_y: Minimum y-value to extrapolate to (optional).
Returns:
- A list of new extrapolated (x, y) pixel coordinates.
"""
if len(pixels) < extr_pixels:
print("Not enough pixels to perform extrapolation.")
return []
recent_pixels = np.array(pixels[-extr_pixels:])
X = recent_pixels[:, 0].reshape(-1, 1) # Reshape for sklearn
y = recent_pixels[:, 1]
model = LinearRegression()
model.fit(X, y)
slope = model.coef_[0]
intercept = model.intercept_
extrapolate = lambda x: slope * x + intercept
# Calculate direction based on last two pixels
dx, dy = 0, 0 # Default values
x_diffs = []
y_diffs = []
for i in range(1,extr_pixels-1):
x_diffs.append(pixels[-i][0] - pixels[-(i+1)][0])
y_diffs.append(pixels[-i][1] - pixels[-(i+1)][1])
x_diff = x_diffs[np.argmax(np.abs(x_diffs))]
y_diff = y_diffs[np.argmax(np.abs(y_diffs))]
if abs(int(x_diff)) >= abs(int(y_diff)):
dx = 1 if x_diff >= 0 else -1
else:
dy = 1 if y_diff >= 0 else -1
last_pixel = pixels[-1]
new_pixels = []
x, y = last_pixel
min_y = min_y if min_y is not None else image.shape[0] - 1
while 0 <= x < image.shape[1] and min_y <= y < image.shape[0]:
if dx != 0: # Horizontal or diagonal movement
x += dx
y = int(extrapolate(x))
elif dy != 0: # Vertical movement
y += dy
# For vertical lines, approximate x based on the last known value
x = int(x)
if 0 <= y < image.shape[0] and 0 <= x < image.shape[1]:
new_pixels.append((x, y))
else:
break
return new_pixels
def extrapolate_borders(dist_marked_id_map, border_l, border_r, lowest_y):
#border_extrapolation_l1 = extrapolate_line(border_l, dist_marked_id_map, lowest_y)
border_extrapolation_l2 = extrapolate_line(border_l[::-1], dist_marked_id_map, lowest_y)
#border_extrapolation_r1 = extrapolate_line(border_r, dist_marked_id_map, lowest_y)
border_extrapolation_r2 = extrapolate_line(border_r[::-1], dist_marked_id_map, lowest_y)
#border_l = border_extrapolation_l2[::-1] + border_l + border_extrapolation_l1
#border_r = border_extrapolation_r2[::-1] + border_r + border_extrapolation_r1
border_l = border_extrapolation_l2[::-1] + border_l
border_r = border_extrapolation_r2[::-1] + border_r
return border_l, border_r
def find_zone_border(id_map, image, edges, irl_width_mm=1435, irl_target_mm=1000, lowest_y = 0):
left_border, right_border, flags_l, flags_r = find_rail_sides(id_map, edges)
dist_marked_id_map, end_points_left, end_points_right, left_region, right_region = find_dist_from_edges(id_map, image, edges, left_border, right_border, irl_width_mm, irl_target_mm)
border_l = interpolate_end_points(end_points_left, flags_l)
border_r = interpolate_end_points(end_points_right, flags_r)
border_l, border_r = extrapolate_borders(dist_marked_id_map, border_l, border_r, lowest_y)
return [border_l, border_r],[left_region, right_region]
def get_clues(segmentation_mask, number_of_clues):
lowest, highest = find_extreme_y_values(segmentation_mask)
if lowest is not None and highest is not None:
clue_step = int((highest - lowest) / number_of_clues+1)
clues = []
for i in range(number_of_clues):
clues.append(highest - (i*clue_step))
clues.append(lowest+int(0.5*clue_step))
return clues
else:
return []
def border_handler(id_map, image, edges, target_distances):
lowest, _ = find_extreme_y_values(id_map)
borders = []
regions = []
for target in target_distances:
borders_regions = find_zone_border(id_map, image, edges, irl_target_mm=target, lowest_y = lowest)
borders.append(borders_regions[0])
regions.append(borders_regions[1])
return borders, id_map, regions
def segment(model_seg, image_size, filename, PATH_jpgs, dataset_type, model_type, item=None):
image_norm, _, image, mask, _ = load(filename, PATH_jpgs, image_size, dataset_type=dataset_type, item=item)
id_map = process(model_seg, image_norm, mask, model_type)
id_map = cv2.resize(id_map, [1920,1080], interpolation=cv2.INTER_NEAREST)
return id_map, image
def detect(model_det, filename_img, PATH_jpgs):
image = cv2.imread(os.path.join(PATH_jpgs, filename_img))
results = model_det.predict(image)
return results, model_det, image
def manage_detections(results, model):
bbox = results[0].boxes.xywh.tolist()
cls = results[0].boxes.cls.tolist()
accepted_stationary = np.array([24,25,28,36])
accepted_moving = np.array([0,1,2,3,7,15,16,17,18,19])
boxes_moving = {}
boxes_stationary = {}
if len(bbox) > 0:
for xywh, clss in zip(bbox, cls):
if clss in accepted_moving:
if clss in boxes_moving.keys() and len(boxes_moving[clss]) > 0:
boxes_moving[clss].append(xywh)
else:
boxes_moving[clss] = [xywh]
if clss in accepted_stationary:
if clss in boxes_stationary.keys() and len(boxes_stationary[clss]) > 0:
boxes_stationary[clss].append(xywh)
else:
boxes_stationary[clss] = [xywh]
return boxes_moving, boxes_stationary
def compute_detection_borders(borders, output_dims=[1080,1920]):
det_height = output_dims[0]-1
det_width = output_dims[1]-1
for i,border in enumerate(borders):
border_l = np.array(border[0])
if list(border_l):
pass
else:
border_l=np.array([[0,0],[0,0]])
endpoints_l = [border_l[0],border_l[-1]]
border_r = np.array(border[1])
if list(border_r):
pass
else:
border_r=np.array([[0,0],[0,0]])
endpoints_r = [border_r[0],border_r[-1]]
if np.array_equal(np.array([[0,0],[0,0]]), endpoints_l):
endpoints_l = [[0,endpoints_r[0][1]],[0,endpoints_r[1][1]]]
if np.array_equal(np.array([[0,0],[0,0]]), endpoints_r):
endpoints_r = [[det_width,endpoints_l[0][1]],[det_width,endpoints_l[1][1]]]
interpolated_top = bresenham_line(endpoints_l[1][0],endpoints_l[1][1],endpoints_r[1][0],endpoints_r[1][1])
zero_range = [0,1,2,3]
height_range = [det_height,det_height-1,det_height-2,det_height-3]
width_range = [det_width,det_width-1,det_width-2,det_width-3]
if (endpoints_l[0][0] in zero_range and endpoints_r[0][1] in height_range):
y_values = np.arange(endpoints_l[0][1], det_height)
x_values = np.full_like(y_values, 0)
bottom1 = np.column_stack((x_values, y_values))
x_values = np.arange(0, endpoints_r[0][0])
y_values = np.full_like(x_values, det_height)
bottom2 = np.column_stack((x_values, y_values))
interpolated_bottom = np.vstack((bottom1, bottom2))
elif (endpoints_l[0][1] in height_range and endpoints_r[0][0] in width_range):
y_values = np.arange(endpoints_r[0][1], det_height)
x_values = np.full_like(y_values, det_width)
bottom1 = np.column_stack((x_values, y_values))
x_values = np.arange(endpoints_l[0][0], det_width)
y_values = np.full_like(x_values, det_height)
bottom2 = np.column_stack((x_values, y_values))
interpolated_bottom = np.vstack((bottom1, bottom2))
elif endpoints_l[0][0] in zero_range and endpoints_r[0][0] in width_range:
y_values = np.arange(endpoints_l[0][1], det_height)
x_values = np.full_like(y_values, 0)
bottom1 = np.column_stack((x_values, y_values))
y_values = np.arange(endpoints_r[0][1], det_height)
x_values = np.full_like(y_values, det_width)
bottom2 = np.column_stack((x_values, y_values))
bottom3_mid = bresenham_line(bottom1[-1][0],bottom1[-1][1],bottom2[-1][0],bottom2[-1][1])
interpolated_bottom = np.vstack((bottom1, bottom2, bottom3_mid))
else:
interpolated_bottom = bresenham_line(endpoints_l[0][0],endpoints_l[0][1],endpoints_r[0][0],endpoints_r[0][1])
borders[i].append(interpolated_bottom)
borders[i].append(interpolated_top)
return borders
def get_bounding_box_points(cx, cy, w, h):
top_left = (cx - w / 2, cy - h / 2)
top_right = (cx + w / 2, cy - h / 2)
bottom_right = (cx + w / 2, cy + h / 2)
bottom_left = (cx - w / 2, cy + h / 2)
corners = [top_left, top_right, bottom_right, bottom_left]
def interpolate(point1, point2, fraction):
"""Interpolate between two points at a given fraction of the distance."""
return (point1[0] + fraction * (point2[0] - point1[0]),
point1[1] + fraction * (point2[1] - point1[1]))
points = []
for i in range(4):
next_i = (i + 1) % 4
points.append(corners[i])
points.append(interpolate(corners[i], corners[next_i], 1 / 3))
points.append(interpolate(corners[i], corners[next_i], 2 / 3))
return points
def classify_detections(boxes_moving, boxes_stationary, borders, img_dims, output_dims=[1080,1920]):
img_h, img_w, _ = img_dims
img_h_scaletofullHD = output_dims[1]/img_w
img_w_scaletofullHD = output_dims[0]/img_h
colors = ["yellow","orange","red","green","blue"]
borders = compute_detection_borders(borders,output_dims)
boxes_info = []
if boxes_moving or boxes_stationary:
if boxes_moving:
for item, coords in boxes_moving.items():
for coord in coords:
x = coord[0]*img_w_scaletofullHD
y = coord[1]*img_h_scaletofullHD
w = coord[2]*img_w_scaletofullHD
h = coord[3]*img_h_scaletofullHD
points_to_test = get_bounding_box_points(x, y, w, h)
complete_border = []
criticality = -1
color = None
for i,border in enumerate(reversed(borders)):
border_nonempty = [np.array(arr) for arr in border if np.array(arr).size > 0]
complete_border = np.vstack((border_nonempty))
instance_border_path = mplPath.Path(np.array(complete_border))
is_inside_borders = False
for point in points_to_test:
is_inside = instance_border_path.contains_point(point)
if is_inside:
is_inside_borders = True
if is_inside_borders:
criticality = i
color = colors[i]
if criticality == -1:
color = colors[3]
boxes_info.append([item, criticality, color, [x, y], [w, h], 1])
if boxes_stationary:
for item, coords in boxes_stationary.items():
for coord in coords:
x = coord[0]*img_w_scaletofullHD
y = coord[1]*img_h_scaletofullHD
w = coord[2]*img_w_scaletofullHD
h = coord[3]*img_h_scaletofullHD
points_to_test = get_bounding_box_points(x, y, w, h)
complete_border = []
criticality = -1
color = None
is_inside_borders = 0
for i,border in enumerate(reversed(borders), start=len(borders) - 1):
border_nonempty = [np.array(arr) for arr in border if np.array(arr).size > 0]
complete_border = np.vstack(border_nonempty)
instance_border_path = mplPath.Path(np.array(complete_border))
is_inside_borders = False
for point in points_to_test:
is_inside = instance_border_path.contains_point(point)
if is_inside:
is_inside_borders = True
if is_inside_borders:
criticality = i
color = colors[4]
if criticality == -1:
color = colors[3]
boxes_info.append([item, criticality, color, [x, y], [w, h], 0])
return boxes_info
else:
print("No accepted detections in this image.")
return []
def draw_classification(classification, id_map):
if classification:
for box in classification:
x,y = box[3]
mark_value = 30
x_start = int(max(x - 2, 0))
x_end = int(min(x + 3, id_map.shape[1]))
y_start = int(max(y - 2, 0))
y_end = int(min(y + 3, id_map.shape[0]))
id_map[y_start:y_end, x_start:x_end] = mark_value
else:
return
def show_result(classification, id_map, names, borders, image, regions, file_index):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (id_map.shape[1], id_map.shape[0]), interpolation = cv2.INTER_LINEAR)
ratio = image.shape[0] / image.shape[1]
fig = plt.figure(figsize=(16, 16*ratio), dpi=100)
plt.imshow(image, cmap='gray')
if classification:
for box in classification:
boxes = True
cx,cy = box[3]
name = names[box[0]]
if boxes:
w,h = box[4]
x = cx - w / 2
y = cy - h / 2
rect = patches.Rectangle((x, y), w, h, linewidth=2, edgecolor=box[2], facecolor='none')
ax = plt.gca()
ax.add_patch(rect)
plt.text(x, y-17, name, color='black', fontsize=10, ha='center', va='center', fontweight='bold', bbox=dict(facecolor=box[2], edgecolor='none', alpha=1))
else:
plt.imshow(id_map, cmap='gray')
plt.text(cx, cy+10, name, color=box[2], fontsize=10, ha='center', va='center', fontweight='bold')
for region in regions:
for side in region:
for line in side:
line = np.array(line)
plt.plot(line[:,1], line[:,0] ,'-', color='lightgrey', marker=None, linewidth=0.5)
#plt.ylim(0, 1080)
#plt.xlim(0, 1920)
plt.gca().invert_yaxis()
colors = ['yellow','orange','red']
borders.reverse()
for i,border in enumerate(borders):
for side in border:
side = np.array(side)
if side.size > 0:
plt.plot(side[:,0],side[:,1] ,'-', color=colors[i], marker=None, linewidth=0.6) #color=colors[i]
#plt.ylim(0, 1080)
#plt.xlim(0, 1920)
plt.gca().invert_yaxis()
plt.xlim(left=0) # Ensure only positive X values are displayed
plt.tight_layout()
plt.show()
#plt.savefig(f'Grafika/Video_export/frames_estimated/frame_{file_index:04d}.jpg', format='jpg', bbox_inches='tight')
#plt.close()
print('Frame processed successfully.')
def run(model_seg, model_det, image_size, filepath_img, PATH_jpgs, dataset_type, model_type, target_distances, file_index, vis, item=None, num_ys = 15):
segmentation_mask, image = segment(model_seg, image_size, filepath_img, PATH_jpgs, dataset_type, model_type, item)
print('File: {}'.format(filepath_img))
# Border search
clues = get_clues(segmentation_mask, num_ys)
#edges = find_edges(segmentation_mask, clues, min_width=int(segmentation_mask.shape[1]*0.02))
edges = find_edges(segmentation_mask, clues, min_width=0)
#id_map_marked = mark_edges(segmentation_mask, edges)
borders, id_map, regions = border_handler(segmentation_mask, image, edges, target_distances)
# Detection
results, model, image = detect(model_det, filepath_img, PATH_jpgs)
boxes_moving, boxes_stationary = manage_detections(results, model)
classification = classify_detections(boxes_moving, boxes_stationary, borders, image.shape, output_dims=segmentation_mask.shape)
#draw_classification(classification, id_map)
show_result(classification, id_map, model.names, borders, image, regions, file_index)
if __name__ == "__main__":
data_type = 'railsem19' #railsem19, pilsen or testdata
model_type = "segformer" #segformer or deeplab
vis = False
image_size = [1024,1024]
target_distances = [650,1000,2000] #[600,1000,2000] [4000,5500,6500] [2000,3000,4000]
num_ys = 10
if data_type == 'pilsen':
file_index = 0
model_seg = load_model(PATH_model_seg)
model_det = load_yolo(PATH_model_det)
for item in enumerate(data_json["data"]):
filepath_img = item[1][1]["path"]
run(model_seg, model_det, image_size, filepath_img, PATH_base, data_type, model_type, target_distances, file_index, vis=vis, item=item, num_ys=num_ys)
elif data_type == 'railsem19':
file_index = 0
model_seg = load_model(PATH_model_seg)
model_det = load_yolo(PATH_model_det)
for filename_img in os.listdir(PATH_jpgs):
#filename_img = "rs07650.jpg"
run(model_seg, model_det, image_size, filename_img, PATH_jpgs, data_type, model_type, target_distances, file_index, vis=vis, item=None, num_ys=num_ys)
file_index += 1
else:
file_index = 0
PATH_jpgs = 'Grafika/Video_export/frames'
model_seg = load_model(PATH_model_seg)
model_det = load_yolo(PATH_model_det)
for filename_img in os.listdir(PATH_jpgs):
if os.path.exists(os.path.join('Grafika/Video_export/frames_estimated', filename_img)):
file_index += 1
continue
else:
run(model_seg, model_det, image_size , filename_img, PATH_jpgs, data_type, model_type, target_distances, file_index, vis=vis, item=None, num_ys=num_ys)
file_index += 1