-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnbody_numba.py
151 lines (127 loc) · 5.1 KB
/
nbody_numba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
Auther: Zewei Liu
Data: 02/19/2017
N-body simulation.
all the optimization included
Original runtime: 109.012778997
This program runtime: 34.3830599785
Relative Speedup: 2.701859625021585
runtime with Numba: 7.382239230203015 s
"""
from itertools import combinations
from numba import jit,int32,float64,vectorize
import time
import numpy as np
@vectorize([float64(float64, float64)])
def vec_deltas(a1, a2):
return a1 - a2
@jit('void(float64,int32,int32[:],int32[:,:],float64[:,:,:])')
def advance(dt,iterations,BODIES_keys,BODIES_keys_pair,bodies_local):
'''
advance the system one timestep
'''
for _ in range(iterations):
for body1,body2 in BODIES_keys_pair:
([x1, y1, z1], v1, m1) = bodies_local[body1]
([x2, y2, z2], v2, m2) = bodies_local[body2]
(dx, dy, dz) = vec_deltas(np.array([x1, y1, z1]),np.array([x2, y2, z2]))
# update vs
mag = dt * ((dx * dx + dy * dy + dz * dz) ** (-1.5))
v1[0] -= dx * m2 * mag
v1[1] -= dy * m2 * mag
v1[2] -= dz * m2 * mag
v2[0] += dx * m1 * mag
v2[1] += dy * m1 * mag
v2[2] += dz * m1 * mag
for body in BODIES_keys:
(r, [vx, vy, vz], m) = bodies_local[body]
r[0] += dt * vx
r[1] += dt * vy
r[2] += dt * vz
@jit('void(int32[:],int64[:,:],float64[:,:,:],float64)')
def report_energy(BODIES_keys,BODIES_keys_pair,bodies_local,e=0.0):
'''
compute the energy and return it so that it can be printed
'''
BODIES_keys = BODIES.keys()
BODIES_keys_pair = list(combinations(BODIES_keys,2))
bodies_local = BODIES
for body1,body2 in BODIES_keys_pair:
((x1, y1, z1), v1, m1) = bodies_local[body1]
((x2, y2, z2), v2, m2) = bodies_local[body2]
(dx, dy, dz) = vec_deltas(np.array([x1,y1,z1]),np.array([x2,y2,z2]))
e -= (m1 * m2) / ((dx * dx + dy * dy + dz * dz) ** 0.5)
for body in BODIES_keys:
(r, [vx, vy, vz], m) = bodies_local[body]
e += m * (vx * vx + vy * vy + vz * vz) / 2.
return e
@jit('void(float64[:],int32[:],float64[:,:,:],float64, float64, float64)')
def offset_momentum(ref, BODIES_keys, bodies_local, px=0.0, py=0.0, pz=0.0):
'''
ref is the body in the center of the system
offset values from this reference
'''
for body in BODIES_keys:
(r, [vx, vy, vz], m) = bodies_local[body]
px -= vx * m
py -= vy * m
pz -= vz * m
(r, v, m) = ref
v[0] = px / m
v[1] = py / m
v[2] = pz / m
@jit('void(int32,int32,int32)')
def nbody(loops,reference, iterations):
'''
nbody simulation
loops - number of loops to run
reference - body at center of system
iterations - number of timesteps to advance
'''
BODIES_keys = BODIES.keys()
# bodies key pair represent different combination of bodies keys
BODIES_keys_pair = list(combinations(BODIES_keys,2))
bodies_local = BODIES
# Set up global state
offset_momentum(BODIES[reference], BODIES_keys, bodies_local)
for _ in range(loops):
# report_energy()
advance(0.01,iterations,BODIES_keys,BODIES_keys_pair,bodies_local)
print(report_energy(BODIES_keys,BODIES_keys_pair,bodies_local))
if __name__ == '__main__':
PI = 3.14159265358979323
SOLAR_MASS = 4 * PI * PI
DAYS_PER_YEAR = 365.24
BODIES = {
'sun': ([0.0, 0.0, 0.0], [0.0, 0.0, 0.0], SOLAR_MASS),
'jupiter': ([4.84143144246472090e+00,
-1.16032004402742839e+00,
-1.03622044471123109e-01],
[1.66007664274403694e-03 * DAYS_PER_YEAR,
7.69901118419740425e-03 * DAYS_PER_YEAR,
-6.90460016972063023e-05 * DAYS_PER_YEAR],
9.54791938424326609e-04 * SOLAR_MASS),
'saturn': ([8.34336671824457987e+00,
4.12479856412430479e+00,
-4.03523417114321381e-01],
[-2.76742510726862411e-03 * DAYS_PER_YEAR,
4.99852801234917238e-03 * DAYS_PER_YEAR,
2.30417297573763929e-05 * DAYS_PER_YEAR],
2.85885980666130812e-04 * SOLAR_MASS),
'uranus': ([1.28943695621391310e+01,
-1.51111514016986312e+01,
-2.23307578892655734e-01],
[2.96460137564761618e-03 * DAYS_PER_YEAR,
2.37847173959480950e-03 * DAYS_PER_YEAR,
-2.96589568540237556e-05 * DAYS_PER_YEAR],
4.36624404335156298e-05 * SOLAR_MASS),
'neptune': ([1.53796971148509165e+01,
-2.59193146099879641e+01,
1.79258772950371181e-01],
[2.68067772490389322e-03 * DAYS_PER_YEAR,
1.62824170038242295e-03 * DAYS_PER_YEAR,
-9.51592254519715870e-05 * DAYS_PER_YEAR],
5.15138902046611451e-05 * SOLAR_MASS)}
time1 = time.time()
nbody(100,'sun',20000)
print("time is ", time.time()-time1)