-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathtrain_2prior.py
451 lines (414 loc) · 20.8 KB
/
train_2prior.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
""" to train hierarchical VAE model with 2 prior
one for style latent, one for latent pts,
based on trainers/train_prior.py
"""
import os
import time
from PIL import Image
import gc
import functools
import psutil
import torch
import torch.nn.functional as F
import torch.nn as nn
import torchvision
import numpy as np
from loguru import logger
import torch.distributed as dist
from torch import optim
from utils.ema import EMA
from utils.model_helper import import_model, loss_fn
from utils.vis_helper import visualize_point_clouds_3d
from utils.eval_helper import compute_NLL_metric
from utils import model_helper, exp_helper, data_helper
from utils.data_helper import normalize_point_clouds
## from utils.diffusion_discretized import DiffusionDiscretized
from utils.diffusion_pvd import DiffusionDiscretized
from utils.diffusion_continuous import make_diffusion, DiffusionBase
from utils.checker import *
from utils import utils
from matplotlib import pyplot as plt
import third_party.pvcnn.functional as pvcnn_fn
from timeit import default_timer as timer
from torch.optim import Adam as FusedAdam
from torch.cuda.amp import autocast, GradScaler
from trainers.train_prior import Trainer as PriorTrainer
from trainers.train_prior import validate_inspect # import Trainer as PriorTrainer
quiet = int(os.environ.get('quiet', 0))
VIS_LATENT_PTS = 0
@torch.no_grad()
def generate_samples_vada_2prior(shape, dae, diffusion, vae, num_samples, enable_autocast,
ode_eps=0.00001, ode_solver_tol=1e-5, # None,
ode_sample=False, prior_var=1.0, temp=1.0, vae_temp=1.0, noise=None, need_denoise=False,
ddim_step=0, clip_feat=None, cls_emb=None, ddim_skip_type='uniform', ddim_kappa=1.0):
output = {}
#kwargs = {}
# if cls_emb is not None:
# kwargs['cls_emb'] = cls_emb
if ode_sample == 1:
assert isinstance(
diffusion, DiffusionBase), 'ODE-based sampling requires cont. diffusion!'
assert ode_eps is not None, 'ODE-based sampling requires integration cutoff ode_eps!'
assert ode_solver_tol is not None, 'ODE-based sampling requires ode solver tolerance!'
start = timer()
condition_input = None
eps_list = []
for i in range(len(dae)):
assert(cls_emb is None), f' not support yet'
eps, nfe, time_ode_solve = diffusion.sample_model_ode(
dae[i], num_samples, shape[i], ode_eps, ode_solver_tol, enable_autocast, temp, noise,
condition_input=condition_input, clip_feat=clip_feat,
)
condition_input = eps
eps_list.append(eps)
output['sampled_eps'] = eps
eps = vae.compose_eps(eps_list) # torch.cat(eps, dim=1)
elif ode_sample == 0:
assert isinstance(
diffusion, DiffusionDiscretized), 'Regular sampling requires disc. diffusion!'
assert noise is None, 'Noise is not used in ancestral sampling.'
nfe = diffusion._diffusion_steps
time_ode_solve = 999.999 # Yeah I know...
start = timer()
condition_input = None if cls_emb is None else cls_emb
all_eps = []
for i in range(len(dae)):
if ddim_step > 0:
assert(cls_emb is None), f'not support yet'
eps, eps_list = diffusion.run_ddim(dae[i],
num_samples, shape[i], temp, enable_autocast,
is_image=False, prior_var=prior_var, ddim_step=ddim_step,
condition_input=condition_input, clip_feat=clip_feat,
skip_type=ddim_skip_type, kappa=ddim_kappa)
else:
eps, eps_list = diffusion.run_denoising_diffusion(dae[i],
num_samples, shape[i], temp, enable_autocast,
is_image=False, prior_var=prior_var,
condition_input=condition_input, clip_feat=clip_feat,
)
condition_input = eps
if cls_emb is not None:
condition_input = torch.cat([condition_input,
cls_emb.unsqueeze(-1).unsqueeze(-1)], dim=1)
if i == 0:
condition_input = vae.global2style(condition_input)
# exit()
all_eps.append(eps)
output['sampled_eps'] = eps
eps = vae.compose_eps(all_eps)
output['eps_list'] = eps_list
output['print/sample_mean_global'] = eps.view(
num_samples, -1).mean(-1).mean()
output['print/sample_var_global'] = eps.view(
num_samples, -1).var(-1).mean()
decomposed_eps = vae.decompose_eps(eps)
image = vae.sample(num_samples=num_samples,
decomposed_eps=decomposed_eps, cls_emb=cls_emb)
end = timer()
sampling_time = end - start
# average over GPUs
nfe_torch = torch.tensor(nfe * 1.0, device='cuda')
sampling_time_torch = torch.tensor(sampling_time * 1.0, device='cuda')
time_ode_solve_torch = torch.tensor(time_ode_solve * 1.0, device='cuda')
return image, nfe_torch, time_ode_solve_torch, sampling_time_torch, output
class Trainer(PriorTrainer):
is_diffusion = 0
def __init__(self, cfg, args):
"""
Args:
cfg: training config
args: used for distributed training
"""
super().__init__(cfg, args)
self.fun_generate_samples_vada = functools.partial(
generate_samples_vada_2prior, ode_eps=cfg.sde.ode_eps,
ddim_skip_type=cfg.sde.ddim_skip_type,
ddim_kappa=cfg.sde.ddim_kappa)
def compute_loss_vae(self, tr_pts, global_step, **kwargs):
""" compute forward for VAE model, used in global-only prior training
Input:
tr_pts: points
global_step: int
Returns:
output dict including entry:
'eps': z ~ posterior
'q_loss': 0 if not train vae else the KL+rec
'x_0_pred': global points if not train vae
'x_0_target': target points
"""
vae = self.model
dae = self.dae
args = self.cfg.sde
distributed = args.distributed
vae_sn_calculator = self.vae_sn_calculator
num_total_iter = self.num_total_iter
## diffusion = self.diffusion_cont if self.cfg.sde.ode_sample else self.diffusion_disc
if self.cfg.sde.ode_sample == 1:
diffusion = self.diffusion_cont
elif self.cfg.sde.ode_sample == 0:
diffusion = self.diffusion_disc
elif self.cfg.sde.ode_sample == 2:
raise NotImplementedError
# diffusion = [self.diffusion_cont, self.diffusion_disc]
B = tr_pts.size(0)
with torch.set_grad_enabled(args.train_vae):
with autocast(enabled=args.autocast_train):
# posterior and likelihood
if not args.train_vae:
output = {}
all_eps, all_log_q, latent_list = vae.encode(tr_pts)
x_0_pred = x_0_target = tr_pts
vae_recon_loss = 0
def make_4d(x): return x.unsqueeze(-1).unsqueeze(-1) if \
len(x.shape) == 2 else x.unsqueeze(-1)
eps = make_4d(all_eps)
output.update({'eps': eps, 'q_loss': torch.zeros(1),
'x_0_pred': tr_pts, 'x_0_target': tr_pts,
'x_0': tr_pts, 'final_pred': tr_pts})
else:
raise NotImplementedError
return output
# ------------------------------------------- #
# training fun #
# ------------------------------------------- #
def train_iter(self, data, *args, **kwargs):
""" forward one iteration; and step optimizer
Args:
data: (dict) tr_points shape: (B,N,3)
see get_loss in models/shapelatent_diffusion.py
"""
# some variables
input_dim = self.cfg.ddpm.input_dim
loss_type = self.cfg.ddpm.loss_type
vae = self.model
dae = self.dae
dae.train()
diffusion = self.diffusion_cont if self.cfg.sde.ode_sample else self.diffusion_disc
if self.cfg.sde.ode_sample == 1:
diffusion = self.diffusion_cont
elif self.cfg.sde.ode_sample == 0:
diffusion = self.diffusion_disc
elif self.cfg.sde.ode_sample == 2:
raise NotImplementedError # not support training with different solver
## diffusion = [self.diffusion_cont, self.diffusion_disc]
dae_optimizer = self.dae_optimizer
vae_optimizer = self.vae_optimizer
args = self.cfg.sde
device = torch.device(self.device_str)
num_total_iter = self.num_total_iter
distributed = self.args.distributed
dae_sn_calculator = self.dae_sn_calculator
vae_sn_calculator = self.vae_sn_calculator
grad_scalar = self.grad_scalar
global_step = step = kwargs.get('step', None)
no_update = kwargs.get('no_update', False)
# update_lr
warmup_iters = len(self.train_loader) * args.warmup_epochs
utils.update_lr(args, global_step, warmup_iters,
dae_optimizer, vae_optimizer)
# input
tr_pts = data['tr_points'].to(device) # (B, Npoints, 3)
inputs = data['input_pts'].to(
device) if 'input_pts' in data else None # the noisy points
tr_img = data['tr_img'].to(device) if 'tr_img' in data else None
model_kwargs = {}
if self.cfg.data.cond_on_cat:
class_label_int = data['cate_idx'].view(-1) # .to(device)
nclass = self.cfg.data.nclass
class_label = torch.nn.functional.one_hot(class_label_int, nclass)
model_kwargs['class_label'] = class_label.float().to(device)
B = batch_size = tr_pts.size(0)
if tr_img is not None:
# tr_img: B,nimg,3,H,W
# logger.info('image: {}', tr_img.shape)
nimg = tr_img.shape[1]
tr_img = tr_img.view(B*nimg, *tr_img.shape[2:])
clip_feat = self.clip_model.encode_image(
tr_img).view(B, nimg, -1).mean(1).float()
else:
clip_feat = None
if self.cfg.clipforge.enable:
assert(clip_feat is not None)
# optimize vae params
vae_optimizer.zero_grad()
output = self.compute_loss_vae(
tr_pts, global_step, inputs=inputs, **model_kwargs)
# the interface between VAE and DAE is eps.
eps = output['eps'].detach() # 4d: B,D,-1,1
CHECK4D(eps)
dae_kwarg = {}
if self.cfg.data.cond_on_cat:
dae_kwarg['condition_input'] = output['cls_emb']
# train prior
if args.train_dae:
dae_optimizer.zero_grad()
with autocast(enabled=args.autocast_train):
# get diffusion quantities for p sampling scheme and reweighting for q
t_p, var_t_p, m_t_p, obj_weight_t_p, _, g2_t_p = \
diffusion.iw_quantities(B, args.time_eps,
args.iw_sample_p, args.iw_subvp_like_vp_sde)
# logger.info('t_p: {}, var: {}, m_t: {}', t_p[0], var_t_p[0], m_t_p[0])
decomposed_eps = self.vae.decompose_eps(eps)
output['vis/eps'] = decomposed_eps[1].view(
-1, self.dae.num_points, self.dae.num_classes)[:, :, :3]
p_loss_list = []
for latent_id, eps in enumerate(decomposed_eps):
noise_p = torch.randn(size=eps.size(), device=device)
eps_t_p = diffusion.sample_q(eps, noise_p, var_t_p, m_t_p)
# run the score model
eps_t_p.requires_grad_(True)
mixing_component = diffusion.mixing_component(
eps_t_p, var_t_p, t_p, enabled=args.mixed_prediction)
if latent_id == 0:
pred_params_p = dae[latent_id](
eps_t_p, t_p, x0=eps, clip_feat=clip_feat, **dae_kwarg)
else:
condition_input = decomposed_eps[0] if not self.cfg.data.cond_on_cat else \
torch.cat(
[decomposed_eps[0], output['cls_emb'].unsqueeze(-1).unsqueeze(-1)], dim=1)
condition_input = self.model.global2style(
condition_input)
pred_params_p = dae[latent_id](eps_t_p, t_p, x0=eps,
condition_input=condition_input, clip_feat=clip_feat)
pred_eps_t0 = (eps_t_p - torch.sqrt(var_t_p)
* pred_params_p) / m_t_p
params = utils.get_mixed_prediction(args.mixed_prediction,
pred_params_p, dae[latent_id].mixing_logit, mixing_component)
if self.cfg.latent_pts.pvd_mse_loss:
p_loss = F.mse_loss(
params.contiguous().view(B, -1), noise_p.view(B, -1),
reduction='mean')
else:
l2_term_p = torch.square(params - noise_p)
p_objective = torch.sum(
obj_weight_t_p * l2_term_p, dim=[1, 2, 3])
regularization_p, dae_norm_loss, dae_bn_loss, dae_wdn_coeff, \
jac_reg_loss, kin_reg_loss = utils.dae_regularization(
args, dae_sn_calculator, diffusion, dae, step, t_p,
pred_params_p, eps_t_p, var_t_p, m_t_p, g2_t_p)
reg_mlogit = ((torch.sum(torch.sigmoid(dae.mixing_logit)) -
args.regularize_mlogit_margin)**2) * args.regularize_mlogit \
if args.regularize_mlogit else 0
p_loss = torch.mean(p_objective) + \
regularization_p + reg_mlogit
if self.writer is not None:
self.writer.avg_meter(
'train/p_loss_%d' % latent_id, p_loss.detach().item())
p_loss_list.append(p_loss)
p_loss = sum(p_loss_list) # torch.cat(p_loss_list, dim=0).sum()
loss = p_loss
# update dae parameters
grad_scalar.scale(p_loss).backward()
utils.average_gradients(dae.parameters(), distributed)
if args.grad_clip_max_norm > 0.: # apply gradient clipping
grad_scalar.unscale_(dae_optimizer)
torch.nn.utils.clip_grad_norm_(dae.parameters(),
max_norm=args.grad_clip_max_norm)
grad_scalar.step(dae_optimizer)
# update grade scalar
grad_scalar.update()
if args.bound_mlogit:
dae.mixing_logit.data.clamp_(max=args.bound_mlogit_value)
# Bookkeeping!
writer = self.writer
if writer is not None:
writer.avg_meter('train/lr_dae', dae_optimizer.state_dict()[
'param_groups'][0]['lr'], global_step)
writer.avg_meter('train/lr_vae', vae_optimizer.state_dict()[
'param_groups'][0]['lr'], global_step)
if self.cfg.latent_pts.pvd_mse_loss:
writer.avg_meter(
'train/p_loss', p_loss.item(), global_step)
if args.mixed_prediction and global_step % 500 == 0:
for i in range(len(dae)):
m = torch.sigmoid(dae[i].mixing_logit)
if not torch.isnan(m).any():
writer.add_histogram(
'mixing_prob_%d' % i, m.detach().cpu().numpy(), global_step)
# no other loss
else:
writer.avg_meter(
'train/p_loss', (p_loss - regularization_p).item(), global_step)
if torch.is_tensor(regularization_p):
writer.avg_meter(
'train/reg_p', regularization_p.item(), global_step)
if args.regularize_mlogit:
writer.avg_meter(
'train/m_logit', reg_mlogit / args.regularize_mlogit, global_step)
if args.mixed_prediction:
writer.avg_meter(
'train/m_logit_sum', torch.sum(torch.sigmoid(dae.mixing_logit)).detach().cpu(), global_step)
if (global_step) % 500 == 0:
writer.add_scalar(
'train/norm_loss_dae', dae_norm_loss, global_step)
writer.add_scalar('train/bn_loss_dae',
dae_bn_loss, global_step)
writer.add_scalar(
'train/norm_coeff_dae', dae_wdn_coeff, global_step)
if args.mixed_prediction:
m = torch.sigmoid(dae.mixing_logit)
if not torch.isnan(m).any():
writer.add_histogram(
'mixing_prob', m.detach().cpu().numpy(), global_step)
# write stats
if self.writer is not None:
for k, v in output.items():
if 'print/' in k and step is not None:
self.writer.avg_meter(k.split('print/')[-1],
v.mean().item() if torch.is_tensor(v) else v,
step=step)
res = output
output_dict = {
'loss': loss.detach().cpu().item(),
'x_0_pred': res['x_0_pred'].detach().cpu(), # perturbed data
'x_0': res['x_0'].detach().cpu(),
# B.B,3
'x_t': res['final_pred'].detach().view(batch_size, -1, res['x_0'].shape[-1]),
't': res.get('t', None)
}
for k, v in output.items():
if 'vis/' in k:
output_dict[k] = v
return output_dict
# --------------------------------------------- #
# visulization function and sampling function #
# --------------------------------------------- #
def build_prior(self):
args = self.cfg.sde
device = torch.device(self.device_str)
arch_instance_dae = utils.get_arch_cells_denoising(
'res_ho_attn', True, False)
num_input_channels = self.cfg.shapelatent.latent_dim
DAE = nn.ModuleList(
[
import_model(self.cfg.latent_pts.style_prior)(args,
self.cfg.latent_pts.style_dim, self.cfg), # global latent prior
import_model(self.cfg.sde.prior_model)(args,
num_input_channels, self.cfg), # latent point prior, conditional model
])
self.dae = DAE.to(device)
# Bad solution! it is used in validate_inspect function
self.dae.num_points = self.dae[1].num_points
self.dae.num_classes = self.dae[1].num_classes
if len(self.cfg.sde.dae_checkpoint):
logger.info('Load dae checkpoint: {}',
self.cfg.sde.dae_checkpoint)
checkpoint = torch.load(
self.cfg.sde.dae_checkpoint, map_location='cpu')
self.dae.load_state_dict(checkpoint['dae_state_dict'])
self.diffusion_cont = make_diffusion(args)
self.diffusion_disc = DiffusionDiscretized(
args, self.diffusion_cont.var, self.cfg)
if not quiet:
logger.info('DAE: {}', self.dae)
logger.info('DAE: param size = %fM ' %
utils.count_parameters_in_M(self.dae))
# sync all parameters between all gpus by sending param from rank 0 to all gpus.
utils.broadcast_params(self.dae.parameters(), self.args.distributed)