-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlayerspp.py
274 lines (235 loc) · 8.79 KB
/
layerspp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
"""Layers for defining NCSN++.
"""
from . import layers
from . import up_or_down_sampling
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
conv1x1 = layers.ddpm_conv1x1
conv3x3 = layers.ddpm_conv3x3
NIN = layers.NIN
default_init = layers.default_init
class GaussianFourierProjection(nn.Module):
"""Gaussian Fourier embeddings for noise levels."""
def __init__(self, embedding_size=256, scale=1.0):
super().__init__()
self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
def forward(self, x):
x_proj = x[:, None] * self.W[None, :] * 2 * np.pi
return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
class Combine(nn.Module):
"""Combine information from skip connections."""
def __init__(self, dim1, dim2, method='cat'):
super().__init__()
self.Conv_0 = conv1x1(dim1, dim2)
self.method = method
def forward(self, x, y):
h = self.Conv_0(x)
if self.method == 'cat':
return torch.cat([h, y], dim=1)
elif self.method == 'sum':
return h + y
else:
raise ValueError(f'Method {self.method} not recognized.')
class AttnBlockpp(nn.Module):
"""Channel-wise self-attention block. Modified from DDPM."""
def __init__(self, channels, skip_rescale=False, init_scale=0.):
super().__init__()
self.GroupNorm_0 = nn.GroupNorm(num_groups=min(channels // 4, 32), num_channels=channels,
eps=1e-6)
self.NIN_0 = NIN(channels, channels)
self.NIN_1 = NIN(channels, channels)
self.NIN_2 = NIN(channels, channels)
self.NIN_3 = NIN(channels, channels, init_scale=init_scale)
self.skip_rescale = skip_rescale
def forward(self, x):
B, C, H, W = x.shape
h = self.GroupNorm_0(x)
q = self.NIN_0(h)
k = self.NIN_1(h)
v = self.NIN_2(h)
w = torch.einsum('bchw,bcij->bhwij', q, k) * (int(C) ** (-0.5))
w = torch.reshape(w, (B, H, W, H * W))
w = F.softmax(w, dim=-1)
w = torch.reshape(w, (B, H, W, H, W))
h = torch.einsum('bhwij,bcij->bchw', w, v)
h = self.NIN_3(h)
if not self.skip_rescale:
return x + h
else:
return (x + h) / np.sqrt(2.)
class Upsample(nn.Module):
def __init__(self, in_ch=None, out_ch=None, with_conv=False, fir=False,
fir_kernel=(1, 3, 3, 1)):
super().__init__()
out_ch = out_ch if out_ch else in_ch
if not fir:
if with_conv:
self.Conv_0 = conv3x3(in_ch, out_ch)
else:
if with_conv:
self.Conv2d_0 = up_or_down_sampling.Conv2d(in_ch, out_ch,
kernel=3, up=True,
resample_kernel=fir_kernel,
use_bias=True,
kernel_init=default_init())
self.fir = fir
self.with_conv = with_conv
self.fir_kernel = fir_kernel
self.out_ch = out_ch
def forward(self, x):
B, C, H, W = x.shape
if not self.fir:
h = F.interpolate(x, (H * 2, W * 2), 'nearest')
if self.with_conv:
h = self.Conv_0(h)
else:
if not self.with_conv:
h = up_or_down_sampling.upsample_2d(x, self.fir_kernel, factor=2)
else:
h = self.Conv2d_0(x)
return h
class Downsample(nn.Module):
def __init__(self, in_ch=None, out_ch=None, with_conv=False, fir=False,
fir_kernel=(1, 3, 3, 1)):
super().__init__()
out_ch = out_ch if out_ch else in_ch
if not fir:
if with_conv:
self.Conv_0 = conv3x3(in_ch, out_ch, stride=2, padding=0)
else:
if with_conv:
self.Conv2d_0 = up_or_down_sampling.Conv2d(in_ch, out_ch,
kernel=3, down=True,
resample_kernel=fir_kernel,
use_bias=True,
kernel_init=default_init())
self.fir = fir
self.fir_kernel = fir_kernel
self.with_conv = with_conv
self.out_ch = out_ch
def forward(self, x):
B, C, H, W = x.shape
if not self.fir:
if self.with_conv:
x = F.pad(x, (0, 1, 0, 1))
x = self.Conv_0(x)
else:
x = F.avg_pool2d(x, 2, stride=2)
else:
if not self.with_conv:
x = up_or_down_sampling.downsample_2d(x, self.fir_kernel, factor=2)
else:
x = self.Conv2d_0(x)
return x
class ResnetBlockDDPMpp(nn.Module):
"""ResBlock adapted from DDPM."""
def __init__(self, act, in_ch, out_ch=None, temb_dim=None, conv_shortcut=False,
dropout=0.1, skip_rescale=False, init_scale=0.):
super().__init__()
out_ch = out_ch if out_ch else in_ch
self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
self.Conv_0 = conv3x3(in_ch, out_ch)
if temb_dim is not None:
self.Dense_0 = nn.Linear(temb_dim, out_ch)
self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape)
nn.init.zeros_(self.Dense_0.bias)
self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
self.Dropout_0 = nn.Dropout(dropout)
self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale)
if in_ch != out_ch:
if conv_shortcut:
self.Conv_2 = conv3x3(in_ch, out_ch)
else:
self.NIN_0 = NIN(in_ch, out_ch)
self.skip_rescale = skip_rescale
self.act = act
self.out_ch = out_ch
self.conv_shortcut = conv_shortcut
def forward(self, x, temb=None):
h = self.act(self.GroupNorm_0(x))
h = self.Conv_0(h)
if temb is not None:
h += self.Dense_0(self.act(temb))[:, :, None, None]
h = self.act(self.GroupNorm_1(h))
h = self.Dropout_0(h)
h = self.Conv_1(h)
if x.shape[1] != self.out_ch:
if self.conv_shortcut:
x = self.Conv_2(x)
else:
x = self.NIN_0(x)
if not self.skip_rescale:
return x + h
else:
return (x + h) / np.sqrt(2.)
class ResnetBlockBigGANpp(nn.Module):
def __init__(self, act, in_ch, out_ch=None, temb_dim=None, up=False, down=False,
dropout=0.1, fir=False, fir_kernel=(1, 3, 3, 1),
skip_rescale=True, init_scale=0.):
super().__init__()
out_ch = out_ch if out_ch else in_ch
self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
self.up = up
self.down = down
self.fir = fir
self.fir_kernel = fir_kernel
self.Conv_0 = conv3x3(in_ch, out_ch)
if temb_dim is not None:
self.Dense_0 = nn.Linear(temb_dim, out_ch)
self.Dense_0.weight.data = default_init()(self.Dense_0.weight.shape)
nn.init.zeros_(self.Dense_0.bias)
self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
self.Dropout_0 = nn.Dropout(dropout)
self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale)
if in_ch != out_ch or up or down:
self.Conv_2 = conv1x1(in_ch, out_ch)
self.skip_rescale = skip_rescale
self.act = act
self.in_ch = in_ch
self.out_ch = out_ch
def forward(self, x, temb=None):
h = self.act(self.GroupNorm_0(x))
if self.up:
if self.fir:
h = up_or_down_sampling.upsample_2d(h, self.fir_kernel, factor=2)
x = up_or_down_sampling.upsample_2d(x, self.fir_kernel, factor=2)
else:
h = up_or_down_sampling.naive_upsample_2d(h, factor=2)
x = up_or_down_sampling.naive_upsample_2d(x, factor=2)
elif self.down:
if self.fir:
h = up_or_down_sampling.downsample_2d(h, self.fir_kernel, factor=2)
x = up_or_down_sampling.downsample_2d(x, self.fir_kernel, factor=2)
else:
h = up_or_down_sampling.naive_downsample_2d(h, factor=2)
x = up_or_down_sampling.naive_downsample_2d(x, factor=2)
h = self.Conv_0(h)
# Add bias to each feature map conditioned on the time embedding
if temb is not None:
h += self.Dense_0(self.act(temb))[:, :, None, None]
h = self.act(self.GroupNorm_1(h))
h = self.Dropout_0(h)
h = self.Conv_1(h)
if self.in_ch != self.out_ch or self.up or self.down:
x = self.Conv_2(x)
if not self.skip_rescale:
return x + h
else:
return (x + h) / np.sqrt(2.)