-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathxtable_vs_pixiedust.html
151 lines (119 loc) · 23.1 KB
/
xtable_vs_pixiedust.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="author" content="Benjamin Nutter" />
<meta name="date" content="2016-04-19" />
<title>xtable vs pixiedust: Speed Comparison</title>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
div.sourceCode { overflow-x: auto; }
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; line-height: 100%; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
code > span.kw { color: #007020; font-weight: bold; } /* Keyword */
code > span.dt { color: #902000; } /* DataType */
code > span.dv { color: #40a070; } /* DecVal */
code > span.bn { color: #40a070; } /* BaseN */
code > span.fl { color: #40a070; } /* Float */
code > span.ch { color: #4070a0; } /* Char */
code > span.st { color: #4070a0; } /* String */
code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
code > span.ot { color: #007020; } /* Other */
code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
code > span.fu { color: #06287e; } /* Function */
code > span.er { color: #ff0000; font-weight: bold; } /* Error */
code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #880000; } /* Constant */
code > span.sc { color: #4070a0; } /* SpecialChar */
code > span.vs { color: #4070a0; } /* VerbatimString */
code > span.ss { color: #bb6688; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #19177c; } /* Variable */
code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code > span.op { color: #666666; } /* Operator */
code > span.bu { } /* BuiltIn */
code > span.ex { } /* Extension */
code > span.pp { color: #bc7a00; } /* Preprocessor */
code > span.at { color: #7d9029; } /* Attribute */
code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
</style>
<link href="data:text/css;charset=utf-8,body%20%7B%0Abackground%2Dcolor%3A%20%23fff%3B%0Amargin%3A%201em%20auto%3B%0Amax%2Dwidth%3A%20700px%3B%0Aoverflow%3A%20visible%3B%0Apadding%2Dleft%3A%202em%3B%0Apadding%2Dright%3A%202em%3B%0Afont%2Dfamily%3A%20%22Open%20Sans%22%2C%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0Afont%2Dsize%3A%2014px%3B%0Aline%2Dheight%3A%201%2E35%3B%0A%7D%0A%23header%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0A%23TOC%20%7B%0Aclear%3A%20both%3B%0Amargin%3A%200%200%2010px%2010px%3B%0Apadding%3A%204px%3B%0Awidth%3A%20400px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Aborder%2Dradius%3A%205px%3B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Afont%2Dsize%3A%2013px%3B%0Aline%2Dheight%3A%201%2E3%3B%0A%7D%0A%23TOC%20%2Etoctitle%20%7B%0Afont%2Dweight%3A%20bold%3B%0Afont%2Dsize%3A%2015px%3B%0Amargin%2Dleft%3A%205px%3B%0A%7D%0A%23TOC%20ul%20%7B%0Apadding%2Dleft%3A%2040px%3B%0Amargin%2Dleft%3A%20%2D1%2E5em%3B%0Amargin%2Dtop%3A%205px%3B%0Amargin%2Dbottom%3A%205px%3B%0A%7D%0A%23TOC%20ul%20ul%20%7B%0Amargin%2Dleft%3A%20%2D2em%3B%0A%7D%0A%23TOC%20li%20%7B%0Aline%2Dheight%3A%2016px%3B%0A%7D%0Atable%20%7B%0Amargin%3A%201em%20auto%3B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dcolor%3A%20%23DDDDDD%3B%0Aborder%2Dstyle%3A%20outset%3B%0Aborder%2Dcollapse%3A%20collapse%3B%0A%7D%0Atable%20th%20%7B%0Aborder%2Dwidth%3A%202px%3B%0Apadding%3A%205px%3B%0Aborder%2Dstyle%3A%20inset%3B%0A%7D%0Atable%20td%20%7B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dstyle%3A%20inset%3B%0Aline%2Dheight%3A%2018px%3B%0Apadding%3A%205px%205px%3B%0A%7D%0Atable%2C%20table%20th%2C%20table%20td%20%7B%0Aborder%2Dleft%2Dstyle%3A%20none%3B%0Aborder%2Dright%2Dstyle%3A%20none%3B%0A%7D%0Atable%20thead%2C%20table%20tr%2Eeven%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Ap%20%7B%0Amargin%3A%200%2E5em%200%3B%0A%7D%0Ablockquote%20%7B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Apadding%3A%200%2E25em%200%2E75em%3B%0A%7D%0Ahr%20%7B%0Aborder%2Dstyle%3A%20solid%3B%0Aborder%3A%20none%3B%0Aborder%2Dtop%3A%201px%20solid%20%23777%3B%0Amargin%3A%2028px%200%3B%0A%7D%0Adl%20%7B%0Amargin%2Dleft%3A%200%3B%0A%7D%0Adl%20dd%20%7B%0Amargin%2Dbottom%3A%2013px%3B%0Amargin%2Dleft%3A%2013px%3B%0A%7D%0Adl%20dt%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Aul%20%7B%0Amargin%2Dtop%3A%200%3B%0A%7D%0Aul%20li%20%7B%0Alist%2Dstyle%3A%20circle%20outside%3B%0A%7D%0Aul%20ul%20%7B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Apre%2C%20code%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0Aborder%2Dradius%3A%203px%3B%0Acolor%3A%20%23333%3B%0Awhite%2Dspace%3A%20pre%2Dwrap%3B%20%0A%7D%0Apre%20%7B%0Aborder%2Dradius%3A%203px%3B%0Amargin%3A%205px%200px%2010px%200px%3B%0Apadding%3A%2010px%3B%0A%7D%0Apre%3Anot%28%5Bclass%5D%29%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Acode%20%7B%0Afont%2Dfamily%3A%20Consolas%2C%20Monaco%2C%20%27Courier%20New%27%2C%20monospace%3B%0Afont%2Dsize%3A%2085%25%3B%0A%7D%0Ap%20%3E%20code%2C%20li%20%3E%20code%20%7B%0Apadding%3A%202px%200px%3B%0A%7D%0Adiv%2Efigure%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0Aimg%20%7B%0Abackground%2Dcolor%3A%20%23FFFFFF%3B%0Apadding%3A%202px%3B%0Aborder%3A%201px%20solid%20%23DDDDDD%3B%0Aborder%2Dradius%3A%203px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Amargin%3A%200%205px%3B%0A%7D%0Ah1%20%7B%0Amargin%2Dtop%3A%200%3B%0Afont%2Dsize%3A%2035px%3B%0Aline%2Dheight%3A%2040px%3B%0A%7D%0Ah2%20%7B%0Aborder%2Dbottom%3A%204px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Apadding%2Dbottom%3A%202px%3B%0Afont%2Dsize%3A%20145%25%3B%0A%7D%0Ah3%20%7B%0Aborder%2Dbottom%3A%202px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Afont%2Dsize%3A%20120%25%3B%0A%7D%0Ah4%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23f7f7f7%3B%0Amargin%2Dleft%3A%208px%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Ah5%2C%20h6%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23ccc%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Aa%20%7B%0Acolor%3A%20%230033dd%3B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0Aa%3Ahover%20%7B%0Acolor%3A%20%236666ff%3B%20%7D%0Aa%3Avisited%20%7B%0Acolor%3A%20%23800080%3B%20%7D%0Aa%3Avisited%3Ahover%20%7B%0Acolor%3A%20%23BB00BB%3B%20%7D%0Aa%5Bhref%5E%3D%22http%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0Aa%5Bhref%5E%3D%22https%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0A%0Acode%20%3E%20span%2Ekw%20%7B%20color%3A%20%23555%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Edt%20%7B%20color%3A%20%23902000%3B%20%7D%20%0Acode%20%3E%20span%2Edv%20%7B%20color%3A%20%2340a070%3B%20%7D%20%0Acode%20%3E%20span%2Ebn%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Efl%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Ech%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Est%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Eco%20%7B%20color%3A%20%23888888%3B%20font%2Dstyle%3A%20italic%3B%20%7D%20%0Acode%20%3E%20span%2Eot%20%7B%20color%3A%20%23007020%3B%20%7D%20%0Acode%20%3E%20span%2Eal%20%7B%20color%3A%20%23ff0000%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Efu%20%7B%20color%3A%20%23900%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%20code%20%3E%20span%2Eer%20%7B%20color%3A%20%23a61717%3B%20background%2Dcolor%3A%20%23e3d2d2%3B%20%7D%20%0A" rel="stylesheet" type="text/css" />
</head>
<body>
<h1 class="title toc-ignore"><code>xtable</code> vs <code>pixiedust</code>: Speed Comparison</h1>
<h4 class="author"><em>Benjamin Nutter</em></h4>
<h4 class="date"><em>2016-04-19</em></h4>
<p>The process for comparing the speed of <code>xtable</code> and <code>pixiedust</code> will be a random sample of 10,000 rows from the <code>mtcars</code> dataset, with replacement. A table with this many rows is certainly at the fringe of the size of tables people my try to produce using either package and is large enough to give us some idea of how the two packages differ in terms of speed.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(dplyr)
<span class="kw">library</span>(ggplot2)
<span class="kw">library</span>(microbenchmark)
<span class="kw">library</span>(stargazer)
<span class="kw">library</span>(xtable)
<span class="kw">set.seed</span>(<span class="dv">100</span>)
LargeTable <-<span class="st"> </span>mtcars[<span class="kw">sample</span>(<span class="dv">1</span>:<span class="kw">nrow</span>(mtcars), <span class="dv">1000</span>, <span class="dt">replace =</span> <span class="ot">TRUE</span>), ]</code></pre></div>
<p>The <code>xtable</code> times are calculated as follows:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">Xtable <-<span class="st"> </span><span class="kw">microbenchmark</span>(<span class="dt">xtable =</span> <span class="kw">print.xtable</span>(<span class="kw">xtable</span>(LargeTable, <span class="dt">type =</span> <span class="st">"html"</span>), <span class="dt">type =</span> <span class="st">"html"</span>,
<span class="dt">print.results =</span> <span class="ot">FALSE</span>),
<span class="dt">times =</span> <span class="dv">10</span>, <span class="dt">unit =</span> <span class="st">"ms"</span>)</code></pre></div>
<p>The <code>stargazer</code> times are calculated in a similar manner.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">Stargazer <-<span class="st"> </span><span class="kw">microbenchmark</span>(<span class="dt">stargazer =</span> {x <-<span class="st"> </span><span class="kw">capture.output</span>(<span class="kw">stargazer</span>(LargeTable,
<span class="dt">type =</span> <span class="st">"html"</span>, <span class="dt">summary =</span> <span class="ot">FALSE</span>))},
<span class="dt">times =</span> <span class="dv">10</span>, <span class="dt">unit =</span> <span class="st">"ms"</span>)</code></pre></div>
<p>The <code>pixiedust</code> times are calculated below. We apply the default background pattern just to add a little more complexity to the table. This should elaborate if adding more sprinkles adds to the processing time. Further investigation will be needed to determine if the time is added in the <code>sprinkle</code> function, or in the printing.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">libs <-<span class="st"> </span><span class="kw">list.files</span>(<span class="st">"F:/pixiedust_library"</span>, <span class="dt">full.names =</span> <span class="ot">TRUE</span>)
lib_versions <-<span class="st"> </span><span class="kw">gsub</span>(<span class="st">"(pixiedust-|[.]tar[.]gz)"</span>, <span class="st">""</span>, <span class="kw">basename</span>(libs))
for (i in <span class="kw">seq_along</span>(libs)){
<span class="kw">library</span>(pixiedust,
<span class="dt">lib.loc=</span><span class="kw">file.path</span>(<span class="st">"F:/pixiedust_library"</span>, lib_versions[i]))
Pixie <-<span class="st"> </span><span class="kw">microbenchmark</span>({<span class="kw">dust</span>(LargeTable) %>%<span class="st"> </span>
<span class="st"> </span><span class="kw">sprinkle_print_method</span>(<span class="st">"html"</span>) %>%
<span class="st"> </span><span class="kw">sprinkle</span>(<span class="dt">bg_pattern_by =</span> <span class="st">"rows"</span>)},
<span class="dt">times =</span> <span class="dv">10</span>, <span class="dt">unit =</span> <span class="st">"ms"</span>)
Pixie$expr <-<span class="st"> </span><span class="kw">paste0</span>(<span class="st">"pixiedust "</span>, lib_versions[i])
<span class="kw">assign</span>(<span class="kw">paste0</span>(<span class="st">"Pixie_"</span>, lib_versions[i]), Pixie)
<span class="kw">detach</span>(<span class="st">"package:pixiedust"</span>, <span class="dt">unload=</span><span class="ot">TRUE</span>)
}
<span class="kw">rm</span>(<span class="dt">list =</span> <span class="kw">c</span>(<span class="st">"Pixie"</span>, <span class="st">"lib_versions"</span>, <span class="st">"libs"</span>, <span class="st">"LargeTable"</span>, <span class="st">"i"</span>, <span class="st">"x"</span>))</code></pre></div>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">Compare <-<span class="st"> </span><span class="kw">bind_rows</span>(<span class="kw">mget</span>(<span class="dt">x =</span> <span class="kw">ls</span>()))
<span class="kw">ggplot</span>(Compare,
<span class="kw">aes</span>(<span class="dt">x =</span> expr, <span class="dt">y =</span> time)) +<span class="st"> </span>
<span class="st"> </span><span class="kw">geom_boxplot</span>() +<span class="st"> </span>
<span class="st"> </span><span class="kw">theme</span>(<span class="dt">axis.text.x =</span> <span class="kw">element_text</span>(<span class="dt">angle =</span> <span class="dv">90</span>, <span class="dt">hjust =</span> <span class="dv">1</span>))</code></pre></div>
<p><img src="" alt /></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">Median <-<span class="st"> </span>Compare %>%
<span class="st"> </span><span class="kw">group_by</span>(expr) %>%
<span class="st"> </span><span class="kw">summarise</span>(<span class="dt">median_time =</span> <span class="kw">median</span>(time)) %>%
<span class="st"> </span><span class="kw">mutate</span>(<span class="dt">relative_time =</span> median_time /<span class="st"> </span><span class="kw">min</span>(median_time)) %>%
<span class="st"> </span><span class="kw">print</span>()</code></pre></div>
<pre><code>## Source: local data frame [8 x 3]
##
## expr median_time relative_time
## <chr> <dbl> <dbl>
## 1 pixiedust 0.2.0 4833278822 71.204772
## 2 pixiedust 0.3.0 4836604173 71.253761
## 3 pixiedust 0.4.0 4851566693 71.474192
## 4 pixiedust 0.5.0 4860370532 71.603892
## 5 pixiedust 0.6.1 4865850720 71.684627
## 6 pixiedust 0.7.0 149273778 2.199129
## 7 stargazer 27556753396 405.971268
## 8 xtable 67878581 1.000000</code></pre>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>