From c6201af83c9d869e31ea0469c50a1d528018aa97 Mon Sep 17 00:00:00 2001 From: Brian Healy Date: Mon, 22 Jan 2024 13:13:03 -0600 Subject: [PATCH 1/2] Add example script containing tf training calls --- tools/tf_training_calls.sh | 40 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) create mode 100644 tools/tf_training_calls.sh diff --git a/tools/tf_training_calls.sh b/tools/tf_training_calls.sh new file mode 100644 index 00000000..5855bb75 --- /dev/null +++ b/tools/tf_training_calls.sh @@ -0,0 +1,40 @@ +# Example tensorflow training calls for different model grids + +# model: LANL2022 +# lightcurves: lcs_lanl_TS_wind2 +create-svdmodel --model LANL2022 --svd-path svdmodels_LANL2022 --interpolation-type tensorflow --tmin 0. --tmax 21.0 --dt 0.1 --data-path lcs_lanl_TS_wind2 --tensorflow-nepochs 100 --outdir output_LANL2022_tf --plot + +# model: Bu2019lm +# lightcurves: lcs_bulla_2019_bns +create-svdmodel --model Bu2019lm --svd-path svdmodels_Bu2019lm --interpolation-type tensorflow --tmin 0. --tmax 21.0 --dt 0.1 --data-path lcs_bulla_2019_bns --tensorflow-nepochs 100 --outdir output_Bu2019lm_tf --plot + +# model: Bu2019nsbh +# lightcurves: lcs_bulla_2019_nsbh +create-svdmodel --model Bu2019nsbh --svd-path svdmodels_Bu2019nsbh --interpolation-type tensorflow --tmin 0. --tmax 21.0 --dt 0.1 --data-path lcs_bulla_2019_nsbh --tensorflow-nepochs 100 --outdir output_Bu2019nsbh_tf --plot + +# model: Bu2022Ye +# lightcurves: lcs_bulla_2022 +create-svdmodel --model Bu2022Ye --svd-path svdmodels_Bu2022Ye --interpolation-type tensorflow --tmin 0. --tmax 21.0 --dt 0.1 --data-path lcs_bulla_2022 --tensorflow-nepochs 100 --outdir output_Bu2022Ye_tf --plot + +# model: Bu2022Ye +# lightcurves: lcs_bulla_2023 +create-svdmodel --model Bu2023Ye --svd-path svdmodels_Bu2023Ye --interpolation-type tensorflow --tmin 0. --tmax 21.0 --dt 0.1 --data-path lcs_bulla_2023 --tensorflow-nepochs 100 --outdir output_Bu2023Ye_tf --plot + +# model: Ka2017 (no smooth) +# lightcurves: lcs_kasen_no_smooth +create-svdmodel --model Ka2017 --svd-path svdmodels_Ka2017_no_smooth --interpolation-type tensorflow --tmin 0. --tmax 21.0 --dt 0.1 --data-path lcs_kasen_no_smooth --tensorflow-nepochs 100 --outdir output_Ka2017_no_smooth_tf --plot + +# model: Ka2017 (with smooth) +# lightcurves: lcs_kasen_with_smooth +create-svdmodel --model Ka2017 --svd-path svdmodels_Ka2017_with_smooth --interpolation-type tensorflow --tmin 0. --tmax 21.0 --dt 0.1 --data-path lcs_kasen_with_smooth --tensorflow-nepochs 100 --outdir output_Ka2017_with_smooth_tf --plot + +# model: AnBa2022_log +# lightcurves: lcs_collapsar +create-svdmodel --model AnBa2022_log --svd-path svdmodels_AnBa2022_log --interpolation-type tensorflow --tmin 0.0 --tmax 21.0 --dt 0.1 --data-path lcs_collapsar --data-file-type hdf5 --plot --tensorflow-nepochs 100 --data-time-unit seconds --outdir output_AnBa2022_log_tf + +# model: AnBa2022_linear +# lightcurves: lcs_collapsar +create-svdmodel --model AnBa2022_linear --svd-path svdmodels_AnBa2022_linear --interpolation-type tensorflow --tmin 0.0 --tmax 21.0 --dt 0.1 --data-path lcs_collapsar --data-file-type hdf5 --plot --tensorflow-nepochs 100 --data-time-unit seconds --outdir output_AnBa2022_linear_tf + +# Use svdmodel-benchmark to generate additional performance plots. It takes many of the same arguments as create-svdmodel above, except for --tensorflow-nepochs and --plot. +# (Note that an error is currently raised if --ncpus is > 1 in svdmodel-benchmark, see Issue #125) From cf770ad09e0256f4235019e16762fbb8822b796c Mon Sep 17 00:00:00 2001 From: Brian Healy Date: Mon, 22 Jan 2024 13:13:14 -0600 Subject: [PATCH 2/2] Update training docs --- doc/training.md | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/doc/training.md b/doc/training.md index 3f90ad70..b25a3311 100644 --- a/doc/training.md +++ b/doc/training.md @@ -1,5 +1,5 @@ -## Training +## Training overview It is common to have light curves on "grids", for which you have a discrete set of parameters for which the lightcurves were simulated. For example, we may know the lightcurves to expect for specific masses m_1 and m_2, but not for any masses between the two. @@ -7,8 +7,9 @@ We rely on sampling from a grid of modeled lightcurves through the use of Princi At this point, you can model this grid as either a Gaussian process or Neural Network. This will allow you to form a **continuous map** from merger parameters to lightcurve eigenvalues, which are then converted directly to the set of light curve parameters that most likely resulted in this lightcurve. +For a list of example training calls on various model grids using tensorflow, see `tools/tf_training_calls.sh`. -### NMMA training +### Training details There are helper functions within NMMA to support this. In particular, `nmma.em.training.SVDTrainingModel` is designed to take in a grid of models and return an interpolation class.