-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
124 lines (97 loc) · 3.49 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
sys.path.append(parent_path)
# ignore warning log
import warnings
warnings.filterwarnings('ignore')
import paddle
from model.core.workspace import load_config, merge_config
from utils.utils.check import check_gpu, check_version, check_config
from utils.utils.cli import ArgsParser
from model.engine import Trainer, init_parallel_env
from model.metrics.coco_utils import json_eval_results
from utils.utils.logger import setup_logger
logger = setup_logger('eval')
def parse_args():
parser = ArgsParser()
parser.add_argument(
"--output_eval",
default=None,
type=str,
help="Evaluation directory, default is current directory.")
parser.add_argument(
'--json_eval',
action='store_true',
default=False,
help='Whether to re eval with already exists bbox.json or mask.json')
# TODO: bias should be unified
parser.add_argument(
"--bias",
action="store_true",
help="whether add bias or not while getting w and h")
parser.add_argument(
"--classwise",
action="store_true",
help="whether per-category AP and draw P-R Curve or not.")
parser.add_argument(
'--save_prediction_only',
action='store_true',
default=False,
help='Whether to save the evaluation results only')
args = parser.parse_args()
return args
def run(FLAGS, cfg):
if FLAGS.json_eval:
logger.info(
"In json_eval mode, PaddleDetection will evaluate json files in "
"output_eval directly. And proposal.json, bbox.json and mask.json "
"will be detected by default.")
json_eval_results(
cfg.metric,
json_directory=FLAGS.output_eval,
dataset=cfg['EvalDataset'])
return
# init parallel environment if nranks > 1
init_parallel_env()
# build trainer
trainer = Trainer(cfg, mode='eval')
# load weights
trainer.load_weights(cfg.weights)
# training
trainer.evaluate()
def main():
FLAGS = parse_args()
cfg = load_config(FLAGS.config)
# TODO: bias should be unified
cfg['bias'] = 1 if FLAGS.bias else 0
cfg['classwise'] = True if FLAGS.classwise else False
cfg['output_eval'] = FLAGS.output_eval
cfg['save_prediction_only'] = FLAGS.save_prediction_only
merge_config(FLAGS.opt)
place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu')
if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn' and not cfg.use_gpu:
cfg['norm_type'] = 'bn'
check_config(cfg)
check_gpu(cfg.use_gpu)
check_version()
run(FLAGS, cfg)
if __name__ == '__main__':
main()