forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
auto_batch.cpp
1009 lines (951 loc) · 48.2 KB
/
auto_batch.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (C) 2018-2022 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "auto_batch.hpp"
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "cpp_interfaces/interface/ie_internal_plugin_config.hpp"
#include "dimension_tracker.hpp"
#include "ie_icore.hpp"
#include "ie_ngraph_utils.hpp"
#include "ie_performance_hints.hpp"
#include "openvino/pass/manager.hpp"
#include "openvino/runtime/intel_gpu/properties.hpp"
#include "transformations/common_optimizations/dimension_tracking.hpp"
#include "transformations/init_node_info.hpp"
#include "transformations/utils/utils.hpp"
namespace AutoBatchPlugin {
using namespace InferenceEngine;
std::vector<std::string> supported_configKeys = {CONFIG_KEY(AUTO_BATCH_DEVICE_CONFIG),
CONFIG_KEY(AUTO_BATCH_TIMEOUT),
CONFIG_KEY(CACHE_DIR)};
template <Precision::ePrecision precision>
Blob::Ptr create_shared_blob_on_top_of_batched_blob(Blob::Ptr batched_blob,
std::string name,
const std::set<std::string>& batched_names,
size_t batch_id,
size_t batch_num) {
typedef typename PrecisionTrait<precision>::value_type TYPE;
typedef typename std::add_pointer<TYPE>::type TYPEPTR;
auto ptr = batched_blob->buffer().as<TYPEPTR>();
auto sizePerBatch = batched_blob->size() / batch_num;
SizeVector dims = batched_blob->getTensorDesc().getDims();
// for performance reason (copy avoidance) current impl of the auto-batching supports only batching by 0th dim
if (batched_names.count(name)) {
dims[0] = 1;
return make_shared_blob<TYPE>({precision, dims, batched_blob->getTensorDesc().getLayout()},
ptr + sizePerBatch * batch_id,
sizePerBatch);
} else {
// same blob for all requests (e.g. constants)
return make_shared_blob<TYPE>({precision, dims, batched_blob->getTensorDesc().getLayout()}, ptr);
}
}
// ------------------------------AutoBatchInferRequest----------------------------
AutoBatchInferRequest::AutoBatchInferRequest(const std::vector<std::shared_ptr<const ov::Node>>& inputs,
const std::vector<std::shared_ptr<const ov::Node>>& outputs,
AutoBatchExecutableNetwork::WorkerInferRequest& workerRequest,
int batch_id,
int num_batch,
const std::set<std::string>& batchedInputs,
const std::set<std::string>& batchedOutputs)
: IInferRequestInternal(inputs, outputs),
_myBatchedRequestWrapper(workerRequest),
_batchId(batch_id),
_batchSize(num_batch) {
ShareBlobsWithBatchRequest(batchedInputs, batchedOutputs);
}
AutoBatchInferRequest::AutoBatchInferRequest(const InputsDataMap& networkInputs,
const OutputsDataMap& networkOutputs,
AutoBatchExecutableNetwork::WorkerInferRequest& workerRequest,
int batch_id,
int num_batch,
const std::set<std::string>& batchedInputs,
const std::set<std::string>& batchedOutputs)
: IInferRequestInternal(networkInputs, networkOutputs),
_myBatchedRequestWrapper(workerRequest),
_batchId(batch_id),
_batchSize(num_batch) {
ShareBlobsWithBatchRequest(batchedInputs, batchedOutputs);
}
void AutoBatchInferRequest::ShareBlobsWithBatchRequest(const std::set<std::string>& batchedInputs,
const std::set<std::string>& batchedOutputs) {
// Allocate all input blobs
for (const auto& it : _networkInputs) {
auto blob = _myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first);
Blob::Ptr res;
switch (it.second->getTensorDesc().getPrecision()) {
case InferenceEngine::Precision::FP32:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::FP32>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::I32:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::I32>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::I8:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::I8>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::I16:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::I16>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::U16:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::U16>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::U32:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::U32>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::FP64:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::FP64>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::FP16:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::FP16>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::BF16:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::BF16>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::U64:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::U64>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::I64:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::I64>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::U8:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::U8>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::BOOL:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::BOOL>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedInputs,
_batchId,
_batchSize);
break;
default:
IE_THROW() << "Unsupported input precision " << it.second->getTensorDesc().getPrecision();
}
_inputs[it.first] = res;
}
// Allocate all output blobs
for (const auto& it : _networkOutputs) {
auto blob = _myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first);
Blob::Ptr res;
switch (it.second->getTensorDesc().getPrecision()) {
case InferenceEngine::Precision::FP32:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::FP32>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::I32:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::I32>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::I8:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::I8>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::I16:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::I16>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::U16:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::U16>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::U32:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::U32>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::FP64:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::FP64>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::FP16:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::FP16>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::BF16:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::BF16>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::U64:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::U64>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::I64:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::I64>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::U8:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::U8>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
case InferenceEngine::Precision::BOOL:
res = create_shared_blob_on_top_of_batched_blob<InferenceEngine::Precision::BOOL>(
_myBatchedRequestWrapper._inferRequestBatched->GetBlob(it.first),
it.first,
batchedOutputs,
_batchId,
_batchSize);
break;
default:
IE_THROW(NotImplemented) << "Unsupported input precision " << it.second->getTensorDesc().getPrecision();
}
_outputs[it.first] = res;
}
}
void AutoBatchInferRequest::SetBlobsToAnotherRequest(SoIInferRequestInternal& req) {
for (const auto& it : _networkInputs) {
auto& name = it.first;
// this request is already in BUSY state, so using the internal functions safely
auto blob = GetBlob(name);
if (req->GetBlob(name) != blob)
req->SetBlob(name, blob);
}
for (const auto& it : _networkOutputs) {
auto& name = it.first;
// this request is already in BUSY state, so using the internal functions safely
auto blob = GetBlob(name);
if (req->GetBlob(name) != blob)
req->SetBlob(name, blob);
}
}
void AutoBatchInferRequest::CopyInputsIfNeeded() {
for (const auto& it : _networkInputs) {
auto& name = it.first;
// this request is already in BUSY state, so using the internal functions safely
CopyBlobIfNeeded(GetBlob(name), _myBatchedRequestWrapper._inferRequestBatched->GetBlob(name), true);
}
}
void AutoBatchInferRequest::CopyBlobIfNeeded(InferenceEngine::Blob::CPtr src,
InferenceEngine::Blob::Ptr dst,
bool bInput) {
auto bufferDst = dst->buffer();
auto ptrDst = bufferDst.as<char*>();
auto bufferSrc = src->cbuffer();
auto ptrSrc = bufferSrc.as<const char*>();
ptrdiff_t szDst = dst->byteSize();
ptrdiff_t szSrc = src->byteSize();
if (bInput) {
ptrdiff_t offset = szSrc != szDst ? _batchId * szDst / _batchSize : 0;
if ((ptrDst + offset) == ptrSrc)
return;
else
memcpy(ptrDst + offset, ptrSrc, szSrc);
} else {
ptrdiff_t offset = szSrc != szDst ? _batchId * szSrc / _batchSize : 0;
if ((ptrSrc + offset) == ptrDst)
return;
else
memcpy(ptrDst, ptrSrc + offset, szDst);
}
}
void AutoBatchInferRequest::CopyOutputsIfNeeded() {
for (const auto& it : _networkOutputs) {
auto& name = it.first;
// this request is already in BUSY state, so using the internal functions safely
CopyBlobIfNeeded(_myBatchedRequestWrapper._inferRequestBatched->GetBlob(name), GetBlob(name), false);
}
}
AutoBatchAsyncInferRequest::AutoBatchAsyncInferRequest(
const AutoBatchInferRequest::Ptr& inferRequest,
InferenceEngine::SoIInferRequestInternal& inferRequestWithoutBatch,
const ITaskExecutor::Ptr& callbackExecutor)
: AsyncInferRequestThreadSafeDefault(inferRequest, nullptr, callbackExecutor),
_inferRequestWithoutBatch(inferRequestWithoutBatch),
_inferRequest{inferRequest} {
// this executor starts the inference while the task (checking the result) is passed to the next stage
struct ThisRequestExecutor : public ITaskExecutor {
explicit ThisRequestExecutor(AutoBatchAsyncInferRequest* _this_) : _this{_this_} {}
void run(Task task) override {
auto& workerInferRequest = _this->_inferRequest->_myBatchedRequestWrapper;
std::pair<AutoBatchAsyncInferRequest*, InferenceEngine::Task> t;
t.first = _this;
t.second = std::move(task);
workerInferRequest._tasks.push(t);
// it is ok to call size() here as the queue only grows (and the bulk removal happens under the mutex)
const int sz = static_cast<int>(workerInferRequest._tasks.size());
if (sz == workerInferRequest._batchSize) {
workerInferRequest._cond.notify_one();
}
};
AutoBatchAsyncInferRequest* _this = nullptr;
};
_pipeline = {{/*TaskExecutor*/ std::make_shared<ThisRequestExecutor>(this), /*task*/ [this] {
if (this->_inferRequest->_exceptionPtr) // if the exception happened in the batch1 fallback
std::rethrow_exception(this->_inferRequest->_exceptionPtr);
auto& batchReq = this->_inferRequest->_myBatchedRequestWrapper;
if (batchReq._exceptionPtr) // when the batchN execution failed
std::rethrow_exception(batchReq._exceptionPtr);
// in the case of non-batched execution the blobs were set explicitly
if (AutoBatchInferRequest::eExecutionFlavor::BATCH_EXECUTED ==
this->_inferRequest->_wasBatchedRequestUsed)
this->_inferRequest->CopyOutputsIfNeeded();
}}};
}
std::map<std::string, InferenceEngine::InferenceEngineProfileInfo> AutoBatchAsyncInferRequest::GetPerformanceCounts()
const {
CheckState();
if (AutoBatchInferRequest::eExecutionFlavor::BATCH_EXECUTED == _inferRequest->_wasBatchedRequestUsed)
return _inferRequest->_myBatchedRequestWrapper._inferRequestBatched->GetPerformanceCounts();
else
return _inferRequestWithoutBatch->GetPerformanceCounts();
}
void AutoBatchAsyncInferRequest::Infer_ThreadUnsafe() {
InferUsingAsync();
}
AutoBatchAsyncInferRequest::~AutoBatchAsyncInferRequest() {
StopAndWait();
}
// ------------------------------AutoBatchExecutableNetwork----------------------------
AutoBatchExecutableNetwork::AutoBatchExecutableNetwork(
const InferenceEngine::SoExecutableNetworkInternal& networkWithBatch,
const InferenceEngine::SoExecutableNetworkInternal& networkWithoutBatch,
const DeviceInformation& networkDevice,
const std::unordered_map<std::string, InferenceEngine::Parameter>& config,
const std::set<std::string>& batchedInputs,
const std::set<std::string>& batchedOutputs)
: InferenceEngine::ExecutableNetworkThreadSafeDefault(nullptr,
std::make_shared<InferenceEngine::ImmediateExecutor>()),
_network{networkWithBatch},
_networkWithoutBatch{networkWithoutBatch},
_config{config},
_batchedInputs(batchedInputs),
_batchedOutputs(batchedOutputs) {
// WA for gcc 4.8 ( fails compilation with member init-list)
_device = networkDevice;
auto time_out = config.find(CONFIG_KEY(AUTO_BATCH_TIMEOUT));
IE_ASSERT(time_out != config.end());
_timeOut = ParseTimeoutValue(time_out->second.as<std::string>());
}
AutoBatchExecutableNetwork::~AutoBatchExecutableNetwork() {
_terminate = true;
for (auto w : _workerRequests) {
w->_thread.join();
}
_workerRequests.clear();
}
unsigned int AutoBatchExecutableNetwork::ParseTimeoutValue(const std::string& s) {
auto val = std::stoi(s);
if (val < 0)
IE_THROW(ParameterMismatch) << "Value for the " << CONFIG_KEY(AUTO_BATCH_TIMEOUT) << " should be unsigned int";
return val;
}
std::shared_ptr<InferenceEngine::RemoteContext> AutoBatchExecutableNetwork::GetContext() const {
return _networkWithoutBatch->GetContext();
}
InferenceEngine::IInferRequestInternal::Ptr AutoBatchExecutableNetwork::CreateInferRequestImpl(
InferenceEngine::InputsDataMap networkInputs,
InferenceEngine::OutputsDataMap networkOutputs) {
auto workerRequestPtrAndId = GetWorkerInferRequest();
return std::make_shared<AutoBatchInferRequest>(networkInputs,
networkOutputs,
workerRequestPtrAndId.first,
workerRequestPtrAndId.second,
_device.batchForDevice,
_batchedInputs,
_batchedOutputs);
}
InferenceEngine::IInferRequestInternal::Ptr AutoBatchExecutableNetwork::CreateInferRequestImpl(
const std::vector<std::shared_ptr<const ov::Node>>& inputs,
const std::vector<std::shared_ptr<const ov::Node>>& outputs) {
if (!this->_plugin || !_plugin->IsNewAPI())
return nullptr;
auto workerRequestPtrAndId = GetWorkerInferRequest();
return std::make_shared<AutoBatchInferRequest>(inputs,
outputs,
workerRequestPtrAndId.first,
workerRequestPtrAndId.second,
_device.batchForDevice,
_batchedInputs,
_batchedOutputs);
}
std::pair<AutoBatchExecutableNetwork::WorkerInferRequest&, int> AutoBatchExecutableNetwork::GetWorkerInferRequest() {
auto num = _numRequestsCreated++;
std::lock_guard<std::mutex> lock(_workerRequestsMutex);
auto batch_id = num % _device.batchForDevice;
if (!batch_id) { // need new request
_workerRequests.push_back(std::make_shared<WorkerInferRequest>());
auto workerRequestPtr = _workerRequests.back().get();
workerRequestPtr->_inferRequestBatched = {_network->CreateInferRequest(), _network._so};
workerRequestPtr->_batchSize = _device.batchForDevice;
workerRequestPtr->_completionTasks.resize(workerRequestPtr->_batchSize);
workerRequestPtr->_inferRequestBatched->SetCallback(
[workerRequestPtr, this](std::exception_ptr exceptionPtr) mutable {
if (exceptionPtr)
workerRequestPtr->_exceptionPtr = exceptionPtr;
IE_ASSERT(workerRequestPtr->_completionTasks.size() == (size_t)workerRequestPtr->_batchSize);
// notify the individual requests on the completion
for (int c = 0; c < workerRequestPtr->_batchSize; c++) {
workerRequestPtr->_completionTasks[c]();
}
// reset the timeout
workerRequestPtr->_cond.notify_one();
});
workerRequestPtr->_thread = std::thread([workerRequestPtr, this] {
while (1) {
std::cv_status status;
{
std::unique_lock<std::mutex> lock(workerRequestPtr->_mutex);
status = workerRequestPtr->_cond.wait_for(lock, std::chrono::milliseconds(_timeOut));
}
if (_terminate) {
break;
} else {
// as we pop the tasks from the queue only here
// it is ok to call size() (as the _tasks can only grow in parallel)
const int sz = static_cast<int>(workerRequestPtr->_tasks.size());
if (sz == workerRequestPtr->_batchSize) {
std::pair<AutoBatchAsyncInferRequest*, InferenceEngine::Task> t;
for (int n = 0; n < sz; n++) {
IE_ASSERT(workerRequestPtr->_tasks.try_pop(t));
workerRequestPtr->_completionTasks[n] = std::move(t.second);
t.first->_inferRequest->CopyInputsIfNeeded();
t.first->_inferRequest->_wasBatchedRequestUsed =
AutoBatchInferRequest::eExecutionFlavor::BATCH_EXECUTED;
}
workerRequestPtr->_inferRequestBatched->StartAsync();
} else if ((status == std::cv_status::timeout) && sz) {
// timeout to collect the batch is over, have to execute the requests in the batch1 mode
std::pair<AutoBatchAsyncInferRequest*, InferenceEngine::Task> t;
// popping all tasks collected by the moment of the time-out and execute each with batch1
std::atomic<int> arrived = {0};
std::promise<void> all_completed;
auto all_completed_future = all_completed.get_future();
for (int n = 0; n < sz; n++) {
IE_ASSERT(workerRequestPtr->_tasks.try_pop(t));
t.first->_inferRequestWithoutBatch->SetCallback(
[t, sz, &arrived, &all_completed](std::exception_ptr p) {
if (p)
t.first->_inferRequest->_exceptionPtr = p;
t.second();
if (sz == ++arrived)
all_completed.set_value();
});
t.first->_inferRequest->_wasBatchedRequestUsed =
AutoBatchInferRequest::eExecutionFlavor::TIMEOUT_EXECUTED;
t.first->_inferRequest->SetBlobsToAnotherRequest(t.first->_inferRequestWithoutBatch);
t.first->_inferRequestWithoutBatch->StartAsync();
}
all_completed_future.get();
// now when all the tasks for this batch are completed, start waiting for the timeout again
}
}
}
});
}
return {*_workerRequests.back(), static_cast<int>(batch_id)};
}
InferenceEngine::IInferRequestInternal::Ptr AutoBatchExecutableNetwork::CreateInferRequest() {
if (!_network) {
auto res = _networkWithoutBatch->CreateInferRequest();
res->setPointerToExecutableNetworkInternal(shared_from_this());
res->setPointerToSo(_networkWithoutBatch._so);
_so = _networkWithoutBatch._so;
return res;
}
// trying to create the new API request first
IInferRequestInternal::Ptr syncRequestImpl = CreateInferRequestImpl(_parameters, _results);
if (!syncRequestImpl)
syncRequestImpl = CreateInferRequestImpl(_networkInputs, _networkOutputs);
syncRequestImpl->setPointerToExecutableNetworkInternal(shared_from_this());
InferenceEngine::SoIInferRequestInternal inferRequestWithoutBatch = {_networkWithoutBatch->CreateInferRequest(),
_networkWithoutBatch._so};
return std::make_shared<AutoBatchAsyncInferRequest>(
std::static_pointer_cast<AutoBatchInferRequest>(syncRequestImpl),
inferRequestWithoutBatch,
_callbackExecutor);
}
std::shared_ptr<ngraph::Function> AutoBatchExecutableNetwork::GetExecGraphInfo() {
return _network && _network->GetExecGraphInfo() ? _network->GetExecGraphInfo()
: _networkWithoutBatch->GetExecGraphInfo();
}
void AutoBatchExecutableNetwork::SetConfig(const std::map<std::string, InferenceEngine::Parameter>& config) {
auto timeout = config.find(CONFIG_KEY(AUTO_BATCH_TIMEOUT));
if (timeout == config.end() || config.size() > 1) {
IE_THROW() << "The only config that can be changed on the fly for the AutoBatching the is the "
<< CONFIG_KEY(AUTO_BATCH_TIMEOUT);
} else {
_timeOut = ParseTimeoutValue(timeout->second.as<std::string>());
}
}
InferenceEngine::Parameter AutoBatchExecutableNetwork::GetConfig(const std::string& name) const {
auto it = _config.find(name);
if (it != _config.end()) {
return it->second;
} else {
// find config key among networks config keys
auto param = _networkWithoutBatch->GetMetric(METRIC_KEY(SUPPORTED_CONFIG_KEYS));
for (auto&& configKey : param.as<std::vector<std::string>>()) {
if (configKey == name) {
return _networkWithoutBatch->GetConfig(configKey);
}
}
IE_THROW(NotFound) << name << " not found in the ExecutableNetwork config";
}
}
InferenceEngine::Parameter AutoBatchExecutableNetwork::GetMetric(const std::string& name) const {
if (name == METRIC_KEY(OPTIMAL_NUMBER_OF_INFER_REQUESTS)) {
auto reqs = 0;
try {
auto hint = _networkWithoutBatch->GetConfig(CONFIG_KEY(PERFORMANCE_HINT_NUM_REQUESTS)).as<std::string>();
reqs = InferenceEngine::PerfHintsConfig::CheckPerformanceHintRequestValue(hint);
if (!reqs) // no limitations from user, let's deduce the full blown #requests
// (multiplied by the devices capabilities to run multiple <batched> requests for further perf)
reqs = _device.batchForDevice *
_networkWithoutBatch->GetMetric(METRIC_KEY(OPTIMAL_NUMBER_OF_INFER_REQUESTS)).as<unsigned int>();
} catch (const InferenceEngine::Exception&) {
}
reqs = std::max(reqs, _device.batchForDevice); // round up to the possible user's value
IE_SET_METRIC_RETURN(OPTIMAL_NUMBER_OF_INFER_REQUESTS, reqs);
} else if (name == METRIC_KEY(NETWORK_NAME)) {
IE_SET_METRIC_RETURN(NETWORK_NAME, _networkWithoutBatch->GetMetric(METRIC_KEY(NETWORK_NAME)).as<std::string>());
} else if (name == METRIC_KEY(SUPPORTED_METRICS)) {
IE_SET_METRIC_RETURN(SUPPORTED_METRICS,
{METRIC_KEY(OPTIMAL_NUMBER_OF_INFER_REQUESTS),
METRIC_KEY(SUPPORTED_METRICS),
METRIC_KEY(NETWORK_NAME),
METRIC_KEY(SUPPORTED_CONFIG_KEYS),
ov::execution_devices.name()});
} else if (name == METRIC_KEY(SUPPORTED_CONFIG_KEYS)) {
IE_SET_METRIC_RETURN(SUPPORTED_CONFIG_KEYS,
{CONFIG_KEY(AUTO_BATCH_TIMEOUT)}); // only timeout can be changed on the fly
} else if (name == ov::execution_devices) {
return _networkWithoutBatch->GetMetric(name);
} else {
IE_THROW() << "Unsupported Network metric: " << name;
}
}
// ------------------------------AutoBatchInferencePlugin----------------------------
namespace {
std::map<std::string, std::string> mergeConfigs(std::map<std::string, std::string> config,
const std::map<std::string, std::string>& local) {
for (auto&& kvp : local) {
config[kvp.first] = kvp.second;
}
return config;
}
} // namespace
DeviceInformation AutoBatchInferencePlugin::ParseBatchDevice(const std::string& deviceWithBatch) {
auto&& d = deviceWithBatch;
auto openingBracket = d.find_first_of('(');
auto closingBracket = d.find_first_of(')', openingBracket);
auto deviceName = d.substr(0, openingBracket);
int batch = 0;
if (closingBracket != std::string::npos && openingBracket < closingBracket) {
batch = std::stol(d.substr(openingBracket + 1, closingBracket - 1));
if (batch <= 0) {
IE_THROW() << "Batch value for '" << deviceName << "' must be > 0, while " << batch << "is passed";
}
}
return {deviceName, {{}}, batch};
}
DeviceInformation AutoBatchInferencePlugin::ParseMetaDevice(const std::string& devicesBatchCfg,
const std::map<std::string, std::string>& config) const {
auto getDeviceConfig = [&](const DeviceName& deviceWithID) {
DeviceIDParser deviceParser(deviceWithID);
std::string deviceName = deviceParser.getDeviceName();
std::map<std::string, std::string> tconfig = mergeConfigs(_config, config);
// set device ID if any
std::string deviceIDLocal = deviceParser.getDeviceID();
if (!deviceIDLocal.empty()) {
tconfig[PluginConfigParams::KEY_DEVICE_ID] = deviceIDLocal;
}
// passthrough the cache dir to core->loadnetwork when underlying device does not support cache dir
auto deviceConfig = GetCore()->GetSupportedConfig(deviceName, tconfig);
if (tconfig.find(CONFIG_KEY(CACHE_DIR)) != tconfig.end() &&
deviceConfig.find(CONFIG_KEY(CACHE_DIR)) == deviceConfig.end()) {
auto tmpiter = tconfig.find(CONFIG_KEY(CACHE_DIR));
if (tmpiter != tconfig.end())
deviceConfig.insert({tmpiter->first, tmpiter->second});
}
return deviceConfig;
};
auto metaDevice = ParseBatchDevice(devicesBatchCfg);
metaDevice.config = getDeviceConfig(metaDevice.deviceName);
auto cfg = config;
// check that no irrelevant config-keys left
for (auto k : config) {
const auto& name = k.first;
auto found_in_supported_cfg = std::find(supported_configKeys.begin(), supported_configKeys.end(), k.first);
auto found_in_device_cfg = metaDevice.config.find(k.first);
if (found_in_device_cfg == metaDevice.config.end() && found_in_supported_cfg == supported_configKeys.end()) {
IE_THROW() << "Unsupported config key: " << name;
}
}
return metaDevice;
}
RemoteContext::Ptr AutoBatchInferencePlugin::CreateContext(const InferenceEngine::ParamMap& config) {
auto cfg = config;
auto it = cfg.find(CONFIG_KEY(AUTO_BATCH_DEVICE_CONFIG));
if (it == cfg.end())
IE_THROW() << "Value for KEY_AUTO_BATCH_DEVICE_CONFIG is not set";
auto val = it->second.as<std::string>();
auto core = GetCore();
if (!core)
return nullptr;
auto metaDevice = ParseMetaDevice(val, std::map<std::string, std::string>());
cfg.erase(it);
return core->CreateContext(metaDevice.deviceName, cfg);
}
Parameter AutoBatchInferencePlugin::GetConfig(const std::string& name,
const std::map<std::string, Parameter>& options) const {
if (supported_configKeys.end() != std::find(supported_configKeys.begin(), supported_configKeys.end(), name)) {
auto it = _config.find(name);
if (it == _config.end()) {
IE_THROW() << "Value for " << name << " is not set";
} else {
return {it->second};
}
} else {
IE_THROW() << "Unsupported config key: " << name;
}
}
void AutoBatchInferencePlugin::CheckConfig(const std::map<std::string, std::string>& config) {
for (auto&& kvp : config) {
const auto name = kvp.first;
const auto val = kvp.second;
if (supported_configKeys.end() == std::find(supported_configKeys.begin(), supported_configKeys.end(), name))
IE_THROW() << "Unsupported config key: " << name;
if (name == CONFIG_KEY(AUTO_BATCH_DEVICE_CONFIG)) {
ParseBatchDevice(val);
} else if (name == CONFIG_KEY(AUTO_BATCH_TIMEOUT)) {
try {
auto t = std::stoi(val);
if (t < 0)
IE_THROW(ParameterMismatch);
} catch (const std::exception&) {
IE_THROW(ParameterMismatch)
<< " Expecting unsigned int value for " << CONFIG_KEY(AUTO_BATCH_TIMEOUT) << " got " << val;
}
}
}
}
void AutoBatchInferencePlugin::SetConfig(const std::map<std::string, std::string>& config) {
CheckConfig(config);
for (auto&& kvp : config) {
_config[kvp.first] = kvp.second;
}
}
static const Version version = {{2, 1}, CI_BUILD_NUMBER, "AutoBatchPlugin"};
IE_DEFINE_PLUGIN_CREATE_FUNCTION(AutoBatchInferencePlugin, version)
AutoBatchInferencePlugin::AutoBatchInferencePlugin() {
_pluginName = "BATCH";
_config[CONFIG_KEY(AUTO_BATCH_TIMEOUT)] = "1000"; // default value, in ms
}
InferenceEngine::Parameter AutoBatchInferencePlugin::GetMetric(
const std::string& name,
const std::map<std::string, InferenceEngine::Parameter>& options) const {
if (name == METRIC_KEY(SUPPORTED_METRICS)) {
std::vector<std::string> metrics;
metrics.push_back(METRIC_KEY(SUPPORTED_METRICS));
metrics.push_back(METRIC_KEY(FULL_DEVICE_NAME));
metrics.push_back(METRIC_KEY(SUPPORTED_CONFIG_KEYS));
IE_SET_METRIC_RETURN(SUPPORTED_METRICS, metrics);
} else if (name == METRIC_KEY(FULL_DEVICE_NAME)) {
IE_SET_METRIC_RETURN(FULL_DEVICE_NAME, _pluginName);
} else if (name == METRIC_KEY(SUPPORTED_CONFIG_KEYS)) {
IE_SET_METRIC_RETURN(SUPPORTED_CONFIG_KEYS, supported_configKeys);
} else {
IE_THROW(NotFound) << "Unsupported metric key " << name;
}
}
IExecutableNetworkInternal::Ptr AutoBatchInferencePlugin::LoadExeNetworkImpl(
const InferenceEngine::CNNNetwork& network,
const std::map<std::string, std::string>& config) {
return LoadNetworkImpl(network, nullptr, config);
}
InferenceEngine::IExecutableNetworkInternal::Ptr AutoBatchInferencePlugin::LoadNetworkImpl(
const InferenceEngine::CNNNetwork& network,
const std::shared_ptr<InferenceEngine::RemoteContext> ctx,
const std::map<std::string, std::string>& config) {
auto core = GetCore();
if (core == nullptr) {
IE_THROW() << "Please, work with Auto-Batching device via InferencEngine::Core object";
}
auto fullConfig = mergeConfigs(_config, config);
auto device_batch = fullConfig.find(CONFIG_KEY(AUTO_BATCH_DEVICE_CONFIG));
if (device_batch == fullConfig.end()) {
IE_THROW() << "KEY_AUTO_BATCH key is not set for BATCH device";
}
auto metaDevice = ParseMetaDevice(device_batch->second, fullConfig);
const auto& deviceName = metaDevice.deviceName;
const auto& deviceConfig = metaDevice.config;
auto deviceConfigNoAutoBatch = deviceConfig;
// avoid recursive auto-batching
deviceConfigNoAutoBatch[CONFIG_KEY(ALLOW_AUTO_BATCHING)] = CONFIG_VALUE(NO);
std::set<std::string> batched_inputs;
std::set<std::string> batched_outputs;
// check that the auto-batching is applicable in general
try {
// if applicable, the Auto-Batching is implicitly enabled via the performance hints
const auto tput = CONFIG_VALUE(THROUGHPUT);
const bool bTputInPlg = core->GetConfig(deviceName, CONFIG_KEY(PERFORMANCE_HINT)).as<std::string>() == tput;
const auto& mode = deviceConfig.find(CONFIG_KEY(PERFORMANCE_HINT));
const bool bTputInLoadCfg = (mode != deviceConfig.end() && mode->second == tput);
// if the auto-batching is enabled implicitly, check the dims carefully, to avoid outstanding failures
const bool check_dims = (bTputInPlg || bTputInLoadCfg);
CNNNetwork clonedNetwork(InferenceEngine::details::cloneNetwork(network));
auto function = clonedNetwork.getFunction();
// find the batch dim
ov::pass::Manager m;
m.register_pass<ngraph::pass::InitNodeInfo>();
m.register_pass<ov::pass::FindBatch>(false, check_dims);
m.run_passes(function);
// do not reshape/re-batch originally batched networks and when there are no inputs with the N* layouts
// input(s) should have the batch dim as the first dim (current limitation of the auto-batching impl)
const auto& params = function->get_parameters();
for (size_t input_id = 0; input_id < params.size(); input_id++) {
const auto& input = params[input_id];
const auto& shape = input->get_partial_shape();
// currently no plugin support batched execution for dynamic networks
if (shape.is_dynamic())
IE_THROW(NotImplemented) << "Auto-batching does not support dynamic networks!";
// check the batch dim: either 0th (and the original batch size of 1) or none
if (shape.size() && ov::DimensionTracker::get_label(shape[0])) {
const auto& static_shape = input->get_shape();
if (static_shape[0] != 1)
IE_THROW(NotImplemented) << "Auto-batching does not reshape/re-batch originally batched networks!";
batched_inputs.insert(
ngraph::op::util::get_ie_output_name(params[input_id]->output(0))); // batched dim for the input
} else {
// if the 0-th dim is not for the batch, then we support only the case when NONE dimension is batch
for (size_t s = 1; s < shape.size(); s++)
if (ov::DimensionTracker::get_label(shape[s]))
IE_THROW(NotImplemented)
<< "Auto-batching operates only networks with inputs/outputs batched by 0th dimension";
}
}
const auto& results = function->get_results();
for (size_t output_id = 0; output_id < results.size(); output_id++) {
const auto& output = results[output_id];
const auto& shape = output->get_output_partial_shape(0);
if (shape.is_dynamic())
IE_THROW(NotImplemented) << "Auto-batching does not support dynamic networks!";
// check the batch dim: either 0th (and the original batch size of 1) or none
if (shape.size() && ov::DimensionTracker::get_label(shape[0])) {
if (shape[0] != 1)
IE_THROW(NotImplemented) << "Auto-batching does not reshape/re-batch originally batched networks!";
const auto& node = output->input_value(0);
batched_outputs.insert(ngraph::op::util::get_ie_output_name(
ov::Output<const ov::Node>(node.get_node(), node.get_index())));
} else {
// if the 0-th dim is not for the batch, then we support only the case when NONE dimension is batch
for (size_t s = 1; s < shape.size(); s++)
if (ov::DimensionTracker::get_label(shape[s]))
IE_THROW(NotImplemented)
<< "Auto-batching operates only networks with outputs batched by 0th dimension";
}
}
if (!batched_inputs.size() || !batched_outputs.size())
IE_THROW(NotImplemented)
<< "Auto-batching supports only networks with inputs/outputs featuring batched dim!";
} catch (...) {
metaDevice.batchForDevice = 1;
}
if (!metaDevice.batchForDevice) {
unsigned int requests = 0;
// batch size is not set explicitly via device name e.g. BATCH:GPU(4)
// let's query the optimal batch size
std::map<std::string, InferenceEngine::Parameter> options;
options["MODEL_PTR"] = std::const_pointer_cast<ngraph::Function>(network.getFunction());
auto optBatchSize = core->GetMetric(deviceName, METRIC_KEY(OPTIMAL_BATCH_SIZE), options).as<unsigned int>();
auto res = core->GetConfig(deviceName, CONFIG_KEY(PERFORMANCE_HINT_NUM_REQUESTS)).as<std::string>();
requests = PerfHintsConfig::CheckPerformanceHintRequestValue(res);
const auto& reqs = config.find(CONFIG_KEY(PERFORMANCE_HINT_NUM_REQUESTS));
if (reqs != config.end())
requests = static_cast<unsigned int>(PerfHintsConfig::CheckPerformanceHintRequestValue(reqs->second));
if (requests)
optBatchSize = std::max(1u, std::min(requests, optBatchSize));
if (optBatchSize > 2) // batching is usually in-efficient for batch<4 (as batch1 kernels are heavily optimized)
metaDevice.batchForDevice = optBatchSize;
else
metaDevice.batchForDevice = 1;
}
auto report_footprint = [](std::shared_ptr<ICore> pCore, std::string device) -> size_t {
size_t footprint = 0;
// TODO: use the per-network metric (22.2) rather than plugin-level
auto stats =
pCore->GetMetric(device, ov::intel_gpu::memory_statistics.name()).as<std::map<std::string, uint64_t>>();
for (auto s : stats)
footprint += s.second;
return footprint;
};
size_t batch1_footprint = 0;
if (deviceName.find("GPU") != std::string::npos)
batch1_footprint = report_footprint(core, deviceName);
auto executableNetworkWithoutBatch = ctx ? core->LoadNetwork(network, ctx, deviceConfigNoAutoBatch)
: core->LoadNetwork(network, deviceName, deviceConfigNoAutoBatch);
if (deviceName.find("GPU") != std::string::npos) {
batch1_footprint = report_footprint(core, deviceName) - batch1_footprint;
if (batch1_footprint) {
const auto total_mem =
GetCore()->GetMetric(deviceName, GPU_METRIC_KEY(DEVICE_TOTAL_MEM_SIZE)).as<uint64_t>();
const int estimated_batch = static_cast<int>((total_mem - batch1_footprint) / batch1_footprint);
int closest = static_cast<int>(pow(2, floor(log(estimated_batch) / log(2))));
closest = std::max(1, closest);
metaDevice.batchForDevice = std::min(metaDevice.batchForDevice, closest);
}
}
// auto-batch settings
std::unordered_map<std::string, InferenceEngine::Parameter> networkConfig;
for (auto c : fullConfig) {
if (supported_configKeys.end() != std::find(supported_configKeys.begin(), supported_configKeys.end(), c.first))
networkConfig.insert(c);
}
InferenceEngine::SoExecutableNetworkInternal executableNetworkWithBatch;
if (metaDevice.batchForDevice > 1 && batched_inputs.size()) {
try {
CNNNetwork reshaped(InferenceEngine::details::cloneNetwork(network));
ICNNNetwork::InputShapes shapes = reshaped.getInputShapes();
for (const auto& input : batched_inputs)
shapes[input][0] = metaDevice.batchForDevice;
reshaped.reshape(shapes);
executableNetworkWithBatch = ctx ? core->LoadNetwork(reshaped, ctx, deviceConfigNoAutoBatch)
: core->LoadNetwork(reshaped, deviceName, deviceConfigNoAutoBatch);
} catch (...) {
metaDevice.batchForDevice = 1;
}
}
return std::make_shared<AutoBatchExecutableNetwork>(executableNetworkWithBatch,
executableNetworkWithoutBatch,
metaDevice,
networkConfig,
batched_inputs,
batched_outputs);
}
InferenceEngine::IExecutableNetworkInternal::Ptr AutoBatchInferencePlugin::LoadExeNetworkImpl(
const InferenceEngine::CNNNetwork& network,
const std::shared_ptr<InferenceEngine::RemoteContext>& context,
const std::map<std::string, std::string>& config) {
return LoadNetworkImpl(network, context, config);
}
InferenceEngine::QueryNetworkResult AutoBatchInferencePlugin::QueryNetwork(
const InferenceEngine::CNNNetwork& network,
const std::map<std::string, std::string>& config) const {
auto core = GetCore();
if (!core)
return InferenceEngine::QueryNetworkResult();
auto cfg = config;
for (auto c : cfg) {
if (c.first == CONFIG_KEY(AUTO_BATCH_DEVICE_CONFIG)) {