-
Notifications
You must be signed in to change notification settings - Fork 117
/
random_search.py
70 lines (60 loc) · 2.41 KB
/
random_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# -*- coding: utf-8 -*-
#
# File : echotorch/examples/optimization/random_search.py
# Description : Optimize hyperparameters of an ESN with a random search.
# Date : 19 August, 2020
#
# This file is part of EchoTorch. EchoTorch is free software: you can
# redistribute it and/or modify it under the terms of the GNU General Public
# License as published by the Free Software Foundation, version 2.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc., 51
# Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Copyright Nils Schaetti <nils.schaetti@unine.ch>, <nils.schaetti@unige.ch>
# Imports
import torch
from echotorch.datasets.NARMADataset import NARMADataset
import echotorch.utils.optimization as optim
import numpy as np
from .narma_evaluation import evaluation_function
# Length of training samples
train_sample_length = 5000
# Length of test samples
test_sample_length = 1000
# How many training/test samples
n_train_samples = 1
n_test_samples = 1
# Manual seed initialisation
np.random.seed(1)
torch.manual_seed(1)
# Get a random optimizer
random_optimizer = optim.optimizer_factory.get_optimizer('random', R=50)
# NARMA10 dataset
narma10_train_dataset = NARMADataset(train_sample_length, n_train_samples, system_order=10)
narma10_test_dataset = NARMADataset(test_sample_length, n_test_samples, system_order=10)
# Parameters ranges
param_ranges = dict()
param_ranges['spectral_radius'] = np.arange(0, 1.1, 0.1)
param_ranges['leaky_rate'] = np.arange(0.1, 1.1, 0.1)
param_ranges['reservoir_size'] = np.arange(50, 500, 50)
param_ranges['connectivity'] = np.arange(0.1, 1.0, 0.1)
param_ranges['ridge_param'] = np.logspace(-10, 2, base=10, num=10)
param_ranges['input_scaling'] = np.arange(0.1, 1.1, 0.1)
param_ranges['bias_scaling'] = np.arange(0.0, 1.1, 0.1)
# Launch the optimization of hyper-parameters
_, best_param, best_NRMSE = random_optimizer.optimize(
evaluation_function,
param_ranges,
(narma10_train_dataset, narma10_test_dataset),
n_samples=5
)
# Show the result
print(("Best hyper-parameters found : {}".format(best_param)))
print(("Best NRMSE : {}".format(best_NRMSE)))