-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
61 lines (48 loc) · 1.94 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import sys
from argparse import ArgumentParser
import json
import warnings
warnings.simplefilter('ignore')
from transformers import AutoTokenizer
from transformers import logging
logging.set_verbosity_warning()
logging.set_verbosity_error()
import torch
from torch.utils.data import DataLoader
from dataset import NERDataset
from model import NERModel
from evaluate import evaluate
from task import get_dict
from utils import save_prediction
def main():
parser = ArgumentParser()
parser.add_argument("--test_data", help="train data path", type=str, required=True)
parser.add_argument(
"--saved_dir", help="saved directory", type=str, required=True
)
parser.add_argument("--batch_size", type=int, default=8, help="batch size")
args = parser.parse_args()
with open(os.path.join(args.saved_dir, 'config.json'), 'r') as f:
config_json = json.load(f)
args.task = config_json['task']
args.pretrained_model = config_json['pretrained_model']
args.max_seq_len = config_json['max_seq_len']
print(args, file=sys.stderr)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
seed = 2022
torch.manual_seed(seed)
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model, do_lower_case = False, do_basic_tokenize=False)
ne_dict = get_dict(args.task)
test_dataset = NERDataset(
args.test_data, args.max_seq_len, tokenizer, ne_dict
)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)
model = NERModel(args.pretrained_model, test_dataset.ne_dict)
state_dict = torch.load(os.path.join(args.saved_dir, 'model_best.pth'))
model.load_state_dict(state_dict)
model = model.to(device)
_, prediction, label = evaluate(model, test_dataloader, ne_dict, device)
save_prediction(test_dataset, prediction, label, os.path.join(args.saved_dir, 'test_prediction.jsonl'))
if __name__ == '__main__':
main()