-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrun_sim_param_variation.py
215 lines (172 loc) · 9.32 KB
/
run_sim_param_variation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import copy
import os
import random
from tqdm import tqdm
import numpy as np
import scipy
from scipy.spatial.transform import Rotation
import json
import torch
from torch.utils.data import DataLoader, Dataset
from torch_geometric.transforms import FaceToEdge
from src.obj_parser import Mesh_obj
from src.SSDRLBS import SSDRLBS
from src.models import *
class AverageMeter():
"""Computes and stores the average and current value"""
def __init__(self):
self.val = 0.0
self.avg = 0.0
self.sum = 0.0
self.count = 0.0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class MotionNet():
def __init__(self, ssdr_model, detail_model, ssdrlbs,
cloth_pose_mean, cloth_pose_std, cloth_trans_mean, cloth_trans_std, ssdr_res_mean, ssdr_res_std,
state):
self.ssdr_model = ssdr_model
self.detail_model = detail_model
self.ssdrlbs = ssdrlbs
self.cloth_pose_mean = cloth_pose_mean
self.cloth_pose_std = cloth_pose_std
self.cloth_trans_mean = cloth_trans_mean
self.cloth_trans_std = cloth_trans_std
self.ssdr_res_mean = ssdr_res_mean
self.ssdr_res_std = ssdr_res_std
self.state = state
self.ssdr_hidden = None
self.detail_hidden = None
def get_results(config_path, anim_path, sim_param, out_path, device="cpu"):
with open(config_path, "r") as f:
config = json.load(f)
gru_dim = config["gru_dim"]
gru_out_dim = config["gru_out_dim"]
mlp_dim = config["mlp_dim"]
joint_list = config["joint_list"]
ssdrlbs_bone_num = config["ssdrlbs_bone_num"]
obj_template_path = config["obj_template_path"]
sim_param_config_path = config["sim_param_config_path"]
pivot_models = config["pivot_models"]
pivot_net_dir = config["pivot_net_dir"]
rbf_mlp_path = config["rbf_mlp_path"]
garment_template = Mesh_obj(obj_template_path)
joint_num = len(joint_list)
with open(sim_param_config_path, "r") as f:
sim_parms = json.load(f)
sim_param_arr = np.zeros((len(sim_parms), 3))
sim_param_keys = [list(sim_parms[i].keys())[0] for i in range(len(sim_parms))]
for i in range(len(sim_parms)):
sim_param_arr[i][0] = sim_parms[i][sim_param_keys[i]]["bendstiffness"]
sim_param_arr[i][1] = sim_parms[i][sim_param_keys[i]]["timescale"]
sim_param_arr[i][2] = sim_parms[i][sim_param_keys[i]]["density"]
sim_param_std = np.std(sim_param_arr, axis=0)
sim_param_mean = np.mean(sim_param_arr, axis=0)
sim_param_arr_normed = (sim_param_arr - sim_param_mean) / sim_param_std
sim_param_arr_normed = sim_param_arr_normed[pivot_models]
motion_networks = []
for pivot_id in pivot_models:
sim_param_id = list(sim_parms[pivot_id].items())[0][0]
ssdrlbs_net_path = os.path.join(pivot_net_dir, sim_param_id, "checkpoints/SSDR.pth.tar")
detail_net_path = os.path.join(pivot_net_dir, sim_param_id, "checkpoints/SSDRRES.pth.tar")
ssdrlbs_root_dir = os.path.join(pivot_net_dir, sim_param_id, "{}bones".format(ssdrlbs_bone_num))
state_path = os.path.join(pivot_net_dir, sim_param_id, "state.npz")
ssdr_model = GRU_Model((joint_num + 1) * 3, gru_dim, [ssdrlbs_bone_num * 6])
ssdr_model.load_state_dict(torch.load(ssdrlbs_net_path))
ssdr_model = ssdr_model.to(device)
ssdr_model.eval()
data = FaceToEdge()(Data(num_nodes=garment_template.v.shape[0],
face=torch.from_numpy(garment_template.f.astype(int).transpose() - 1).long()))
detail_model = GRU_GNN_Model(6 * ssdrlbs_bone_num, gru_dim, [gru_out_dim * garment_template.v.shape[0]],
10, [3, 8, 16], data.edge_index.to(device))
detail_model.load_state_dict(torch.load(detail_net_path))
detail_model.to(device)
detail_model.eval()
ssdrlbs = SSDRLBS(os.path.join(ssdrlbs_root_dir, "u.obj"),
os.path.join(ssdrlbs_root_dir, "skin_weights.npy"),
os.path.join(ssdrlbs_root_dir, "u_trans.npy"),
device)
state = np.load(state_path)
cloth_pose_mean = torch.from_numpy(state["cloth_pose_mean"]).to(device)
cloth_pose_std = torch.from_numpy(state["cloth_pose_std"]).to(device)
cloth_trans_mean = torch.from_numpy(state["cloth_trans_mean"]).to(device)
cloth_trans_std = torch.from_numpy(state["cloth_trans_std"]).to(device)
ssdr_res_mean = state["ssdr_res_mean"]
ssdr_res_std = state["ssdr_res_std"]
vert_std = state["sim_res_std"]
vert_mean = state["sim_res_mean"]
motion_networks.append(MotionNet(ssdr_model, detail_model, ssdrlbs,
cloth_pose_mean, cloth_pose_std, cloth_trans_mean, cloth_trans_std,
ssdr_res_mean, ssdr_res_std, state))
rbf_mlp_model = MLPModel(mlp_dim)
rbf_mlp_model.load_state_dict(torch.load(rbf_mlp_path))
rbf_mlp_model.to(device)
rbf_mlp_model.eval()
anim = np.load(anim_path)
state = motion_networks[0].state
pose_arr = (anim["poses"] - state["pose_mean"]) / state["pose_std"]
trans_arr = (anim["trans"] - anim["trans"][0] - state["trans_mean"]) / state["trans_std"]
item_length = pose_arr.shape[0]
with torch.no_grad():
for motion_network in motion_networks:
motion_network.ssdr_hidden = None
motion_network.detail_hidden = None
for frame in tqdm(range(item_length)):
motion_signature = np.zeros(((len(joint_list) + 1) * 3), dtype=np.float32)
for j in range(len(joint_list)):
motion_signature[j * 3: j * 3 + 3] = pose_arr[frame, joint_list[j]]
motion_signature[len(joint_list) * 3:] = trans_arr[frame]
motion_signature = torch.from_numpy(motion_signature)
motion_signature = motion_signature.view((1, -1)).to(device)
final_res_arr = np.zeros((len(pivot_models), garment_template.v.shape[0], 3))
for index, motion_network in enumerate(motion_networks):
pred_rot_trans, new_ssdr_hidden = motion_network.ssdr_model(motion_signature,
motion_network.ssdr_hidden)
motion_network.ssdr_hidden = new_ssdr_hidden
pred_pose = pred_rot_trans.view((-1, 6))[:, 0:3] * motion_network.cloth_pose_std + \
motion_network.cloth_pose_mean
pred_trans = pred_rot_trans.view((-1, 6))[:, 3:6] * motion_network.cloth_trans_std + \
motion_network.cloth_trans_mean
ssdr_res = motion_network.ssdrlbs.batch_pose(
pred_trans.reshape((1, 1, pred_trans.shape[0], pred_trans.shape[1])),
torch.deg2rad(pred_pose).reshape(
(1, 1, pred_pose.shape[0], pred_pose.shape[1])))
detail_res, new_detail_hidden = motion_network.detail_model(pred_rot_trans, ssdr_res,
motion_network.detail_hidden)
motion_network.detail_hidden = new_detail_hidden
final_res = ssdr_res.detach().cpu().numpy().reshape((-1, 3)) + \
(detail_res.detach().cpu().numpy().reshape(
(-1, 3)) * motion_network.ssdr_res_std + motion_network.ssdr_res_mean)
final_res_arr[index] = final_res
sim_param_normed = (sim_param - sim_param_mean) / sim_param_std
sim_param_normed = torch.from_numpy(sim_param_normed).to(device).float().reshape((1, -1))
pivot_param = torch.from_numpy(sim_param_arr_normed).to(device).float()
projected_target_param = rbf_mlp_model(sim_param_normed)
projecetd_pivot_param = rbf_mlp_model(pivot_param)
projected_param_diff = torch.linalg.norm(projecetd_pivot_param - projected_target_param, dim=1)
weights = torch.exp(-projected_param_diff / 1.0)
normed_weights = weights / torch.sum(weights)
normed_weights = normed_weights.detach().cpu().numpy()
final_res = np.einsum("i,iab->ab", normed_weights, final_res_arr)
pose = pose_arr[frame] * state["pose_std"] + state["pose_mean"]
trans = trans_arr[frame] * state["trans_std"] + state["trans_mean"]
trans_off = np.array([0,
-2.1519510746002397,
90.4766845703125]) / 100.0
trans += trans_off
final_res = np.matmul(Rotation.from_rotvec(pose[0]).as_matrix(),
final_res.transpose()).transpose()
final_res += trans
out_obj = copy.deepcopy(garment_template)
out_obj.v = final_res
# out_obj.write(os.path.join(out_path, "{}.obj".format(frame)))
if __name__ == "__main__":
config_path = "assets/dress02_sim_params/config.json"
anim_path = "anim/anim1.npz"
out_path = "out"
device = "cuda:0"
sim_param = np.array([-8.066074945242537, 0.5042348713899382, 0.07167780009477188])
get_results(config_path, anim_path, sim_param, out_path, device)