From ecf72d8b544a4c04a9975d1375d6e700a13261a0 Mon Sep 17 00:00:00 2001 From: Joyee Cheung Date: Wed, 11 Jan 2017 20:16:25 +0800 Subject: [PATCH] benchmark: use "confidence" in output of compare.R Use the word "confidence" to indicate the confidence level of the p value so it's easier to understand. With this change more stars in the output of compare.R means higher confidence level (lower significance level). PR-URL: https://github.com/nodejs/node/pull/10737 Refs: https://github.com/nodejs/node/pull/10439 Reviewed-By: Anna Henningsen Reviewed-By: James M Snell Reviewed-By: Andreas Madsen --- benchmark/README.md | 8 ++++---- benchmark/compare.R | 12 ++++++------ 2 files changed, 10 insertions(+), 10 deletions(-) diff --git a/benchmark/README.md b/benchmark/README.md index aa198f2b414444..8796e1e7b6ad38 100644 --- a/benchmark/README.md +++ b/benchmark/README.md @@ -161,7 +161,7 @@ For analysing the benchmark results use the `compare.R` tool. ```console $ cat compare-pr-5134.csv | Rscript benchmark/compare.R - improvement significant p.value + improvement confidence p.value string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=ascii 12.46 % *** 1.165345e-04 string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=base64-ascii 24.70 % *** 1.820615e-15 string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=base64-utf8 23.60 % *** 2.105625e-12 @@ -171,7 +171,7 @@ string_decoder/string-decoder.js n=250000 chunk=1024 inlen=128 encoding=ascii ``` In the output, _improvement_ is the relative improvement of the new version, -hopefully this is positive. _significant_ tells if there is enough +hopefully this is positive. _confidence_ tells if there is enough statistical evidence to validate the _improvement_. If there is enough evidence then there will be at least one star (`*`), more stars is just better. **However if there are no stars, then you shouldn't make any conclusions based on the @@ -189,7 +189,7 @@ may require more runs to obtain (can be set with `--runs`). _For the statistically minded, the R script performs an [independent/unpaired 2-group t-test][t-test], with the null hypothesis that the performance is the -same for both versions. The significant field will show a star if the p-value +same for both versions. The confidence field will show a star if the p-value is less than `0.05`._ The `compare.R` tool can also produce a box plot by using the `--plot filename` @@ -202,7 +202,7 @@ keep the first line since that contains the header information. ```console $ cat compare-pr-5134.csv | sed '1p;/encoding=ascii/!d' | Rscript benchmark/compare.R --plot compare-plot.png - improvement significant p.value + improvement confidence p.value string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=ascii 12.46 % *** 1.165345e-04 string_decoder/string-decoder.js n=250000 chunk=1024 inlen=128 encoding=ascii 6.70 % * 2.928003e-02 string_decoder/string-decoder.js n=250000 chunk=1024 inlen=32 encoding=ascii 7.47 % *** 5.780583e-04 diff --git a/benchmark/compare.R b/benchmark/compare.R index b4316ca7f81600..3f37cad74ad847 100644 --- a/benchmark/compare.R +++ b/benchmark/compare.R @@ -46,7 +46,7 @@ statistics = ddply(dat, "name", function(subdat) { improvement = sprintf("%.2f %%", ((new.mu - old.mu) / old.mu * 100)); p.value = NA; - significant = 'NA'; + confidence = 'NA'; # Check if there is enough data to calulate the calculate the p-value if (length(old.rate) > 1 && length(new.rate) > 1) { # Perform a statistics test to see of there actually is a difference in @@ -56,19 +56,19 @@ statistics = ddply(dat, "name", function(subdat) { # Add user friendly stars to the table. There should be at least one star # before you can say that there is an improvement. - significant = ''; + confidence = ''; if (p.value < 0.001) { - significant = '***'; + confidence = '***'; } else if (p.value < 0.01) { - significant = '**'; + confidence = '**'; } else if (p.value < 0.05) { - significant = '*'; + confidence = '*'; } } r = list( improvement = improvement, - significant = significant, + confidence = confidence, p.value = p.value ); return(data.frame(r));