-
Notifications
You must be signed in to change notification settings - Fork 3
/
TreeCutter.m
448 lines (397 loc) · 18.4 KB
/
TreeCutter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
classdef TreeCutter < handle
properties
% mesh variables - initially the original mesh's, and get updated
% during the cutting.
V; %the vertices of the mesh
T; %the triangles
pathPairs; %seams.
new2old;
old2new;
%cutting variables - all data related to the required cutting
treeStructure; %the adjacencies of the tree to cut according to
treeIndices; %the indices in the mesh related to the tree
treeRoot;%the index that is the root of the tree
%flag to make sure we only perform cutting ONCE
alreadyCut;
%verbose flag
VERBOSE=0;
%tolerance of snapping to vertex
finishedPaths=0;
end
methods
function obj=TreeCutter(V,T,tree,treeindices,root)
assert(all(diag(tree)==0));
obj.V=V;
obj.T=T;
obj.pathPairs=[];
obj.old2new=num2cell(1:length(V));
obj.new2old=1:length(V);
obj.alreadyCut=0;
if nargin<5
root=1;
end
obj.treeRoot=root;
obj.treeStructure=tree;%Undirect2Direct(tree+tree');
obj.treeIndices=treeindices;
obj.directTree();
% assert(length(obj.treeRoot)==1);
end
function directTree(obj)
%make sure the tree is directed
tree=obj.treeStructure;
directedTree=sparse(length(tree),length(tree));
%Perform BFS on tree.
%stack that holds nodes to visit
roots=[obj.treeRoot];
%perform bfs
while(~isempty(roots)) %nodes in stack
%pop node from stack
root=roots(1);
roots=roots(2:end);
%find all nodes with edges to it
sons=find(tree(root,:)|tree(:,root)');
%make sure none of the children are in roots - that would
%mean a cycle in the original undirected tree also
assert(~any(ismember(sons,roots)));
%insert all the children as children of the current node
directedTree(root,sons)=1;
%delete the adjacencies between children and current node
%(so as to not make double edges when visiting children)
tree(root,sons)=0;
tree(sons,root)=0;
%add children to nodes to visit
roots=[roots sons];
end
obj.treeStructure=directedTree;%Undirect2Direct(tree+tree');
end
function cutTree(obj)
if obj.alreadyCut
error('can only cut once!');
end
% disp('====== Cutting mesh ======');
% progressbar('Cutting Mesh');
obj.alreadyCut=1;
obj.cutTreeRecurse(obj.treeRoot);
% progressbar(1);
% pathPairsOrdered={};
% for i=1:length(obj.pathPairs)
% ind=(obj.treeIndices==obj.new2old(obj.pathPairs{i}(end,1)));
% pathPairsOrdered{ind}=obj.pathPairs{i};
% end
% obj.pathPairs=pathPairsOrdered;
end
function cutTreeRecurse(obj,root)
sons=find(obj.treeStructure(root,:));
if isempty(sons)
return;
end
starPaths={};
sourceInd=obj.treeIndices(root);
for i=1:length(sons)
son=sons(i);
targetInd=obj.treeIndices(son);
%computing weighted adjacencies
E=[obj.T(:,[1 2]);obj.T(:,[1 3]);obj.T(:,[2 3])];
E=sort(E,2);
E=unique(E,'rows');
d=obj.V(E(:,1),:)-obj.V(E(:,2),:);
d=sqrt(sum(d.^2,2));
A=sparse([E(:,1);E(:,2)],[E(:,2);E(:,1)],[d;d],length(obj.V),length(obj.V));
%remove boundary indices
tri=triangulation(obj.T,obj.V);
%!!!!! change for 2016 paper !!!
remove_inds=obj.treeIndices;
if size(remove_inds,1)~=1
remove_inds=remove_inds';
end
binds=tri.freeBoundary();
if ~isempty(binds)
remove_inds=[remove_inds'; binds(:,1)];
end
remove_inds=setdiff(remove_inds,[sourceInd targetInd]);
A(remove_inds,:)=0;
A(:,remove_inds)=0;
%[dist,newPath]=graphshortestpath(A,sourceInd, targetInd);
gg=graph(A);
[newPath,dist]=gg.shortestpath(sourceInd,targetInd);
if isinf(dist)
figure(1677);
clf
obj.visualize();
hold on;
scatter3(obj.V(sourceInd,1),obj.V(sourceInd,2),obj.V(sourceInd,3),500,'filled');
scatter3(obj.V(targetInd,1),obj.V(targetInd,2),obj.V(targetInd,3),500,'filled');
error('couldn''t reach target node!');
end
newPath=newPath(1:end);
if isempty(newPath)
figure(1677);
clf
obj.visualize();
hold on;
scatter3(obj.V(sourceInd,1),obj.V(sourceInd,2),obj.V(sourceInd,3),500,'filled');
scatter3(obj.V(targetInd,1),obj.V(targetInd,2),obj.V(targetInd,3),500,'filled');
error('a path to cut was empty');
end
starPaths{end+1}=obj.split_mesh_by_path(newPath);
obj.finishedPaths=obj.finishedPaths+1;
% progressbar(obj.finishedPaths/nnz(obj.treeStructure));
end
obj.splitCenterNode(obj.treeIndices(root),starPaths);
for i=1:length(sons)
son=sons(i);
obj.cutTreeRecurse(son);
end
end
function splitCenterNode(obj,center ,starPathPairs)
%after splitting a "star", that is all sons of a current root
%node, we need to duplicate the root several times, as it is
%not duplicated during the actual cutting.
%center - index of the root of the "star"
%starPathPairs - the pathPairs of the star
%find all tris touching the center vertex
inds=find(any(ismember(obj.T,center),2));
%now gonna split the one-rign to groups of adjacent tris
groups={};
%inds is the stack of tris to assign to a group
while(true)
%get the first tri from the stack
theGroup=inds(1);
%now expand the group from the seed
while(true)
%get all vertices in current tri group
vs=unique(obj.T(theGroup,:));
%remove the center
vs=setdiff(vs,center);
%find all tris in the one ring that have a vertex in the group (not
%the center).
newMembers=find(any(ismember(obj.T(inds,:),vs),2));
%if exhausted all tris, stop
if isempty(newMembers)
break
end
%if found new members add them to group
theGroup=[theGroup;inds(newMembers)];
%and remove them from the stack
inds(newMembers)=[];
end
%add the new group
groups{end+1}=unique(theGroup);
%if handled all tris in one-ring, finish.
if isempty(inds)
break;
end
end
%now insert copies of the center tri and update the adjacencies
group_centers={};
for i=1:length(groups)
%current group
g=groups{i};
%tris in current group
t=obj.T(g,:);
%if it's the first group no need to assign a new ind, we will just use
%the existing one (so it is assigned to one group)
if i>1
%insert copy of center
obj.V=[obj.V;obj.V(center,:)];
centerInd=length(obj.V);
obj.new2old(centerInd)=center;
obj.old2new{center}=[obj.old2new{center} centerInd];
else
centerInd=center;
end
%update all instances of original vertex with the new one
t(t==center)=centerInd;
group_centers{i}=centerInd;
obj.T(g,:)=t;
%correct the paths
end
for j=1:length(starPathPairs)
%get a pair of (coreposidning) paths
pair=starPathPairs{j};
%for each of the pair
centers=nan(1,2);
for k=1:2
for i=1:length(groups)
%current group
g=groups{i};
%if this half of the pair is in g it should get the new ind.
%since the star paths do not contain the centerVertex if they
%share a member with the group it must be some other vertex
%than the center one.
if any(ismember(pair(:,k),obj.T(g,:)))
if ~isnan(centers(k))
error('something is wrong');
end
centers(k)=group_centers{i};
end
end
end
assert(~any(isnan(centers)));
pair=[centers;pair];
starPathPairs{j}=pair;
end
for j=1:length(obj.pathPairs)
%get a pair of (coreposidning) paths
pair=obj.pathPairs{j};
%for each of the pair
%%% TODO make eaceh pair correspond to group and then assign the
%%% new center according to that.
centers=nan(1,2);
for k=1:2
for i=1:length(groups)
%current group
g=groups{i};
%if this half of the pair is in g it should get the new ind
%for the old paths we check all inds except for the last one,
%as the last one cannot be a member of the groups unless its
%the center of the star, in which case it being a member is not
%indicative to which group this path belongs
if any(ismember(pair(1:end-1,k),obj.T(g,:)))
assert(isnan(centers(k)));
centers(k)=group_centers{i};
end
end
end
if(isnan(centers(1))~=isnan(centers(2)))
figure(5000);
obj.visualize();
error;
end
%if nan means this path is not part of the star - nothing to do
if ~isnan(centers(1))
pair(end,:)=centers;
obj.pathPairs{j}=pair;
end
end
obj.pathPairs=[obj.pathPairs starPathPairs];
end
function [ two_tris] = newTrisToInsert(obj, tri,shared_edge,ind_to_insert)
%find the index that is not part of the edge we are to split
otherind=setdiff(tri,shared_edge);
%find the place of the ind
indplace=find(tri==otherind);
%set the tri s.t. the other ind is first and the edge to split is in [2 3]
tri=tri([(indplace):3 1:(indplace-1)]);
%create the two tris: [new e1 split] and [new e3 split
two_tris=[tri([1 2]) ind_to_insert;ind_to_insert tri([3 1]) ];
for i=1:2
assert(length(unique(two_tris(i,:)))==3);
end
end
function [path_corr ] = split_mesh_by_path( obj,p )
%split the mesh by a given list of indices that describe a list
%of adjacent edges to cut.
%%%TODO - need to check if crossing existing edge on other paths,
%%%if so need to refuse split
%will hold which tris are to left\right of cut
left=[];
right=[];
%go over the entire path
for j=1:length(p)-1
%the next edge to check
e=[p(j:j+1)];
%find the two tris that are adjacent to it
tris_to_split=find(sum(ismember(obj.T,e),2)==2);
assert(length(tris_to_split)==2);
%take the 1st tri to split of the pair
tri=obj.T(tris_to_split(1),:);
%check its orientation wrt the edge
ind1= find(tri==e(1));
ind2=find(tri==e(2));
inds=[ind1 ind2];
%positive orientation
if all(inds==[1 2]) || all(inds==[2 3]) || all(inds==[3 1])
left=[left;tris_to_split(1)];
right=[right;tris_to_split(2)];
else% negative orientation
left=[left;tris_to_split(2)];
right=[right;tris_to_split(1)];
end
end
%now find tris that touch ANY vertex on the path that's not an end
%point
inds=find(any(ismember(obj.T,p(2:end-1)),2));
%remove from these the tris we already found to be adjacent to edges
inds=setdiff(inds,left);
inds=setdiff(inds,right);
for iter=1:1000
%find all tris adjacent to a tri on the right side
for j=1:length(right)
r=find(sum(ismember(obj.T(inds,:),obj.T(right(j),:)),2)>=2);
right=[right;inds(r)];
end
%find all tris adjacent to a tri on the left side
for j=1:length(left)
l=find(sum(ismember(obj.T(inds,:),obj.T(left(j),:)),2)>=2);
left=[left;inds(l)];
end
%make sure left and right are adjoint
right=setdiff(right,left);
%remove the found tris from the inds
inds=setdiff(inds,right);
inds=setdiff(inds,left);
%if finished all touching tris we can finish
if isempty(inds)
break
end
end
%will hold the correspondences beteween the two sides of the seam
cur_path_corr=[];
%go over all points not an end point
for j=2:length(p)-1
%duplicate vertex
new_pathV=obj.V(p(j),:);
obj.V=[obj.V;new_pathV];
newInd=length(obj.V);
%we change the indices of all tris on the left side of the cut
tleft=obj.T(left,:); %take the tris
tleft(tleft==p(j))=newInd; %replace the ind
obj.T(left,:)=tleft; %insert tris back
cur_path_corr=[cur_path_corr;p(j),newInd]; %insert new pair into correspondance
obj.old2new{p(j)}=[obj.old2new{p(j)} newInd];
obj.new2old(newInd)=p(j);
end
%add the last vertex on path. We do not split it, but we need it to keep
%track of which vertices are on which edge
cur_path_corr=[cur_path_corr;p(end) p(end)];
path_corr=cur_path_corr;
% patch('Faces',T(right,:),'Vertices',V,'FaceColor','blue');
% patch('Faces',T(left,:),'Vertices',V,'FaceColor','red');
end
function visualize(obj)
hold on
patch('Faces',obj.T,'Vertices',obj.V,'FaceColor','White');
% set(gcf,'units','normalized','outerposition',[0 0 1 1])
c_lim=2;
for i=1:length(obj.pathPairs)
p=obj.pathPairs{i};
%scatter(obj.V(p(1,1),1),obj.V(p(1,1),2),80,'filled');
if size(obj.V,2)==2
scatter(obj.V(p(end,1),1),obj.V(p(end,1),2),120,'filled');
scatter(obj.V(p(end,2),1),obj.V(p(end,2),2),120,'filled');
scatter(obj.V(p(1,1),1),obj.V(p(1,1),2),120,'filled');
scatter(obj.V(p(1,2),1),obj.V(p(1,2),2),120,'filled');
if nargin>4
c=lineCol;
else
c=hsv2rgb([i/length(obj.pathPairs),1,1]);
end
line(obj.V(p(:,1),1),obj.V(p(:,1),2),'linewidth',4,'Color',c);
line(obj.V(p(:,2),1),obj.V(p(:,2),2),'linewidth',4,'Color',c);
scatter(obj.V(p(:,1),1),obj.V(p(:,1),2),20,'filled','black');
scatter(obj.V(p(:,2),1),obj.V(p(:,2),2),20,'filled','black');
%scatter(obj.V(p(:,2),1),obj.V(p(:,2),2),'linewidth',3,'Color',hsv2rgb([i/length(obj.pathPairs),1,1]));
else
scatter3(obj.V(p(end,1),1),obj.V(p(end,1),2),obj.V(p(end,1),3),120,'filled');
scatter3(obj.V(p(end,2),1),obj.V(p(end,2),2),obj.V(p(end,2),3),120,'filled');
line(obj.V(p(:,1),1),obj.V(p(:,1),2),obj.V(p(:,1),3),'linewidth',3,'Color',hsv2rgb([i/length(obj.pathPairs),1,1]));
line(obj.V(p(:,2),1),obj.V(p(:,2),2),obj.V(p(:,1),3),'linewidth',3,'Color',hsv2rgb([i/length(obj.pathPairs),1,1]));
end
end
caxis([1 c_lim])
axis equal
%saveas(h,sprintf('%d.png',i),'png');
end
end
end