forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTensorIterator.h
333 lines (271 loc) · 11.1 KB
/
TensorIterator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#pragma once
#include <ATen/ATen.h>
#include <c10/util/SmallVector.h>
#include <ATen/core/Range.h>
#include <ATen/detail/ScalarTypeConversions.h>
#include <bitset>
#include <c10/util/Optional.h>
// TensorIterator is a helper class for element-wise operations, such as
// arithmetic, comparisions, and trigonometric functions. It handles
// broadcasting and type conversions of operands.
//
// This is inspired by NumPy's Array Iterator API (NpyIter).
//
// The files Loops.h and Loops.cuh provide functions to build kernels that
// use TensorIterator.
//
// Example:
//
// auto iter = TensorIterator::Builder()
// .add_output(output)
// .add_input(input)
// .build()
//
// [MyKernel.cpp / MyKernel.cu]
// binary_kernel(iter, [](float a, float b) {
// return a + b;
// });
//
// gpu_binary_kernel(iter, []GPU_LAMBDA(float a, float b) -> float {
// return a + b;
// });
//
// Note [Result type computation]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// TensorIterator handles limited mixed-type operations. The result type is
// computed using promoteTypes on the scalar types of the operands with the
// following precedence:
//
// 1) Tensors with dim 1 or higher
// 2) Tensors with dim 0 that aren't wrapped numbers (e.g. `tensor(5)`)
// 3) Tensors with dim 0 that are wrapped numbers (e.g. `5`)
//
// So if there are any tensors of dim 1 or higher, then 0-dim tensors do not
// affect the result type. This behavior was chosen to preserve backwards
// compatibility and is *likely to change* in the near future.
// (See https://github.com/pytorch/pytorch/issues/9515)
//
// Note that TensorIterator currently supports type conversions on 0-dim
// tensors. Other type conversions will raise an exception.
namespace at {
struct DimCounter {
DimCounter(IntArrayRef shape, Range range);
void increment(const std::array<int64_t, 2>& step);
bool is_done() const;
std::array<int64_t, 2> max_2d_step() const;
IntArrayRef shape;
Range range;
DimVector values;
int64_t offset;
};
struct CAFFE2_API OperandInfo {
OperandInfo() {}
explicit OperandInfo(const Tensor& t, const Backend backend=Backend::Undefined, const ScalarType dtype=ScalarType::Undefined)
: tensor(t), backend(backend), dtype(dtype) {
if (t.defined() && (backend == Backend::Undefined || dtype == ScalarType::Undefined)) {
this->backend = t.type().backend();
this->dtype = t.scalar_type();
}
}
/// Stride after broadcasting. The stride is in bytes, not number of elements.
DimVector stride_bytes;
/// The original tensor operand. Note that the strides, data pointer, and
/// other attributes may differ due to dimension reordering and
/// coalescing.
Tensor tensor;
/// The desired type for the operand. For inputs, this specifies that the
/// input should be converted to this type if necessary. For outputs, this
/// specifies which type to allocate. Note that there is very limited support
/// for type conversions currently: they are only allowed for zero-dim tensors.
Backend backend = Backend::Undefined;
ScalarType dtype = ScalarType::Undefined;
bool is_type_defined() {
return dtype != ScalarType::Undefined && backend != Backend::Undefined;
}
bool is_type_equal(Backend b, ScalarType s) {
return dtype == s && backend == b;
}
void set_type(Backend b, ScalarType s) {
dtype = s;
backend = b;
}
TensorOptions options() {
return TensorOptions(backendToDeviceType(backend)).dtype(dtype);
}
/// The data pointer. This may be different from tensor.data_ptr() if the
/// iterator is split.
void* data = nullptr;
bool is_output = false;
bool is_read_write = false;
};
struct SplitUntil32Bit;
struct CAFFE2_API TensorIterator {
struct Builder;
friend struct Builder;
using DimMask = std::bitset<64>;
using PtrVector = SmallVector<char*, 4>;
TensorIterator() {}
// The inner-loop function operates on the fastest moving dimension. It
// implements element-wise operations in terms of 1-d strided tensors.
//
// Arguments:
// ntensors: number of operands
// data: data pointers for each operand (length `ntensors`)
// strides: stride for each operand (length `ntensors`)
// size: size of inner loop
//
// The `size` often matches shape[0], but may be smaller due to
// parallelization of the inner loop.
using loop_t = std::function<void(int ntensors, char** data, const int64_t* strides, int64_t size)>;
using loop2d_t = std::function<void(int ntensors, char** data, const int64_t* strides, int64_t size0, int64_t size1)>;
using loop_subiter_t = std::function<void(TensorIterator& subiter)>;
void foreach_reduced_elt(const loop_subiter_t& loop, bool parallelize=true);
static std::unique_ptr<TensorIterator> binary_op(Tensor& out, const Tensor& a, const Tensor& b);
static std::unique_ptr<TensorIterator> unary_op(Tensor& out, const Tensor& a);
static std::unique_ptr<TensorIterator> reduce_op(Tensor& out, const Tensor& a);
int ndim() const { return shape_.size(); }
IntArrayRef shape() const { return shape_; }
int64_t numel() const;
int ntensors() const { return operands_.size(); }
/// number of elements in the output operand. this is the same as numel() for
/// operations that are not reductions.
int64_t num_output_elements() const;
/// number of reduced dimensions in a reduction operation
int num_reduce_dims() const;
/// 1-dimensional iteration and no buffering or type conversion
bool is_trivial_1d() const;
bool is_dim_reduced(int dim) const;
/// Accessors for each operand
IntArrayRef strides(int arg) const { return operands_[arg].stride_bytes; }
void* data_ptr(int arg) const;
ScalarType dtype(int arg=0) const { return operands_[arg].dtype; }
DeviceType device_type(int arg=0) const { return backendToDeviceType(operands_[arg].backend); }
int64_t element_size(int arg) const { return elementSize(dtype(arg)); }
bool is_scalar(int arg) const;
bool is_cpu_scalar(int arg) const;
const Tensor& tensor(int arg) const { return operands_[arg].tensor; }
Tensor& tensor(int arg) { return operands_[arg].tensor; }
Tensor output(int arg=0) const {
AT_ASSERT(arg < num_outputs_);
return operands_[arg].tensor;
}
/// Removes an operand from this iterator
void remove_operand(int arg);
/// Removes a dimension from this iterator
void remove_dimension(int dim);
/// Shrinks an iterated dimension
void narrow(int dim, int64_t start, int64_t size);
/// Narrows every dim after and including `start_dim` to size one.
void select_all_keeping_dim(int start_dim, IntArrayRef starts);
/// Replaces the data pointer and strides for the operand at index `arg`
void replace_operand(int arg, void* data, IntArrayRef stride);
/// Splits this TensorIterator into two iterators. Together they iterate over
/// the entire operation. Used by `with_32bit_indexing()`.
std::unique_ptr<TensorIterator> split(int dim);
/// Returns the dimension with the largest extent: (size[dim]-1) * stride[dim]
int get_dim_to_split() const;
template <typename T>
T scalar_value(int arg) {
auto& op = operands_[arg];
return at::detail::load<T>(op.data, op.tensor.scalar_type());
}
void for_each(const loop_t& loop);
void for_each(const loop2d_t& loop);
void parallel_reduce(const loop2d_t& loop);
void serial_for_each(const loop_t& loop, Range range) const;
void serial_for_each(const loop2d_t& loop, Range range) const;
/// Create a strides array for a Tensor with shape of this iterator. The
/// parameter `element_size` specifies the size of Tensor's data type in
/// bytes (e.g. `4` for `float`)
DimVector compatible_stride(int element_size) const;
/// Inverts the re-ordering done by reorder_dimensions. This can only be
/// called *before* coalesce_dimensions() is called.
DimVector invert_perm(IntArrayRef input) const;
/// Helper functions for CPU iteration
DimVector get_dim_strides(int dim) const;
DimVector get_strides() const;
DimVector get_inner_strides() const { return get_dim_strides(0); }
PtrVector get_data_ptrs(ArrayRef<char*> base, IntArrayRef counter) const;
PtrVector get_base_ptrs() const;
/// true if the stride computation can use 32-bit arithmetic. Used by GPU kernels
bool can_use_32bit_indexing() const;
/// An "iteratable" object that recursively splits this iterator into sub-iterators
/// that can use 32-bit indexing.
SplitUntil32Bit with_32bit_indexing() const;
/// If the kernel should accumulate into the output. Only relevant for CUDA
/// reductions.
bool should_accumulate() const { return accumulate_; }
/// Whether this iterator produces the actual output,
/// as opposed to something that will be accumulated further. Only relevant for
/// CUDA reductions.
bool is_final_output() const { return final_output_; }
protected:
void mark_outputs();
void compute_shape();
void compute_strides();
void reorder_dimensions();
void permute_dimensions(IntArrayRef perm);
void compute_types();
std::pair<Backend, ScalarType> compute_common_type();
void allocate_outputs();
void coalesce_dimensions();
protected:
DimVector shape_;
DimVector perm_;
SmallVector<OperandInfo, 4> operands_;
int num_outputs_ = 0;
bool has_coalesced_dimensions_ = false;
bool accumulate_ = false;
bool resize_outputs_ = true;
bool is_reduction_ = false;
bool compute_common_dtype_ = true;
bool allow_cpu_scalars_ = false;
bool promote_gpu_output_dtypes_ = false;
bool final_output_ = true;
};
struct TensorIterator::Builder {
friend struct TensorIterator;
Builder() : iter_(new TensorIterator()) {};
void add_output(const Tensor& output, const Backend backend=Backend::Undefined, const ScalarType dtype=ScalarType::Undefined) {
iter_->operands_.emplace_back(output, backend, dtype);
iter_->num_outputs_++;
}
void add_input(const Tensor& input, const Backend backend=Backend::Undefined, const ScalarType dtype=ScalarType::Undefined) {
iter_->operands_.emplace_back(input, backend, dtype);
}
void dont_compute_common_dtype() {
iter_->compute_common_dtype_ = false;
}
void dont_resize_outputs() {
iter_->resize_outputs_ = false;
}
std::unique_ptr<TensorIterator> build();
protected:
std::unique_ptr<TensorIterator> iter_;
};
/// A container-like struct that acts as if it contains splits of a
/// TensorIterator that can use 32-bit indexing. Taken together the splits cover
/// the original TensorIterator.
struct CAFFE2_API SplitUntil32Bit {
struct CAFFE2_API iterator {
iterator() {};
iterator(const TensorIterator& iter);
iterator(iterator&&) = default;
TensorIterator& operator*() const;
iterator& operator++();
bool operator==(const iterator& other) const {
// two iterators are equal if they are the same object or they're both empty
return this == &other || (vec.empty() && other.vec.empty());
}
// needed for C++11 range-based for loop
bool operator!=(const iterator& other) const { return !(*this == other); }
/// stack of TensorIterators to be split
std::vector<std::unique_ptr<TensorIterator>> vec;
};
SplitUntil32Bit(const TensorIterator& iter) : iter(iter) {}
iterator begin() const;
iterator end() const;
private:
const TensorIterator& iter;
};
} // namespace at