-
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
/
Copy pathunit-unicode1.cpp
655 lines (578 loc) · 28 KB
/
unit-unicode1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/*
__ _____ _____ _____
__| | __| | | | JSON for Modern C++ (test suite)
| | |__ | | | | | | version 3.10.0
|_____|_____|_____|_|___| https://github.com/nlohmann/json
Licensed under the MIT License <http://opensource.org/licenses/MIT>.
SPDX-License-Identifier: MIT
Copyright (c) 2013-2019 Niels Lohmann <http://nlohmann.me>.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "doctest_compatibility.h"
// for some reason including this after the json header leads to linker errors with VS 2017...
#include <locale>
#include <nlohmann/json.hpp>
using nlohmann::json;
#include <fstream>
#include <sstream>
#include <iomanip>
#include <test_data.hpp>
TEST_CASE("Unicode (1/5)" * doctest::skip())
{
SECTION("\\uxxxx sequences")
{
// create an escaped string from a code point
const auto codepoint_to_unicode = [](std::size_t cp)
{
// code points are represented as a six-character sequence: a
// reverse solidus, followed by the lowercase letter u, followed
// by four hexadecimal digits that encode the character's code
// point
std::stringstream ss;
ss << "\\u" << std::setw(4) << std::setfill('0') << std::hex << cp;
return ss.str();
};
SECTION("correct sequences")
{
// generate all UTF-8 code points; in total, 1112064 code points are
// generated: 0x1FFFFF code points - 2048 invalid values between
// 0xD800 and 0xDFFF.
for (std::size_t cp = 0; cp <= 0x10FFFFu; ++cp)
{
// string to store the code point as in \uxxxx format
std::string json_text = "\"";
// decide whether to use one or two \uxxxx sequences
if (cp < 0x10000u)
{
// The Unicode standard permanently reserves these code point
// values for UTF-16 encoding of the high and low surrogates, and
// they will never be assigned a character, so there should be no
// reason to encode them. The official Unicode standard says that
// no UTF forms, including UTF-16, can encode these code points.
if (cp >= 0xD800u && cp <= 0xDFFFu)
{
// if we would not skip these code points, we would get a
// "missing low surrogate" exception
continue;
}
// code points in the Basic Multilingual Plane can be
// represented with one \uxxxx sequence
json_text += codepoint_to_unicode(cp);
}
else
{
// To escape an extended character that is not in the Basic
// Multilingual Plane, the character is represented as a
// 12-character sequence, encoding the UTF-16 surrogate pair
const auto codepoint1 = 0xd800u + (((cp - 0x10000u) >> 10) & 0x3ffu);
const auto codepoint2 = 0xdc00u + ((cp - 0x10000u) & 0x3ffu);
json_text += codepoint_to_unicode(codepoint1) + codepoint_to_unicode(codepoint2);
}
json_text += "\"";
CAPTURE(json_text)
json _;
CHECK_NOTHROW(_ = json::parse(json_text));
}
}
SECTION("incorrect sequences")
{
SECTION("incorrect surrogate values")
{
json _;
CHECK_THROWS_AS(_ = json::parse("\"\\uDC00\\uDC00\""), json::parse_error&);
CHECK_THROWS_WITH(_ = json::parse("\"\\uDC00\\uDC00\""),
"[json.exception.parse_error.101] parse error at line 1, column 7: syntax error while parsing value - invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF; last read: '\"\\uDC00'");
CHECK_THROWS_AS(_ = json::parse("\"\\uD7FF\\uDC00\""), json::parse_error&);
CHECK_THROWS_WITH(_ = json::parse("\"\\uD7FF\\uDC00\""),
"[json.exception.parse_error.101] parse error at line 1, column 13: syntax error while parsing value - invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF; last read: '\"\\uD7FF\\uDC00'");
CHECK_THROWS_AS(_ = json::parse("\"\\uD800]\""), json::parse_error&);
CHECK_THROWS_WITH(_ = json::parse("\"\\uD800]\""),
"[json.exception.parse_error.101] parse error at line 1, column 8: syntax error while parsing value - invalid string: surrogate U+D800..U+DBFF must be followed by U+DC00..U+DFFF; last read: '\"\\uD800]'");
CHECK_THROWS_AS(_ = json::parse("\"\\uD800\\v\""), json::parse_error&);
CHECK_THROWS_WITH(_ = json::parse("\"\\uD800\\v\""),
"[json.exception.parse_error.101] parse error at line 1, column 9: syntax error while parsing value - invalid string: surrogate U+D800..U+DBFF must be followed by U+DC00..U+DFFF; last read: '\"\\uD800\\v'");
CHECK_THROWS_AS(_ = json::parse("\"\\uD800\\u123\""), json::parse_error&);
CHECK_THROWS_WITH(_ = json::parse("\"\\uD800\\u123\""),
"[json.exception.parse_error.101] parse error at line 1, column 13: syntax error while parsing value - invalid string: '\\u' must be followed by 4 hex digits; last read: '\"\\uD800\\u123\"'");
CHECK_THROWS_AS(_ = json::parse("\"\\uD800\\uDBFF\""), json::parse_error&);
CHECK_THROWS_WITH(_ = json::parse("\"\\uD800\\uDBFF\""),
"[json.exception.parse_error.101] parse error at line 1, column 13: syntax error while parsing value - invalid string: surrogate U+D800..U+DBFF must be followed by U+DC00..U+DFFF; last read: '\"\\uD800\\uDBFF'");
CHECK_THROWS_AS(_ = json::parse("\"\\uD800\\uE000\""), json::parse_error&);
CHECK_THROWS_WITH(_ = json::parse("\"\\uD800\\uE000\""),
"[json.exception.parse_error.101] parse error at line 1, column 13: syntax error while parsing value - invalid string: surrogate U+D800..U+DBFF must be followed by U+DC00..U+DFFF; last read: '\"\\uD800\\uE000'");
}
}
#if 0
SECTION("incorrect sequences")
{
SECTION("high surrogate without low surrogate")
{
// D800..DBFF are high surrogates and must be followed by low
// surrogates DC00..DFFF; here, nothing follows
for (std::size_t cp = 0xD800u; cp <= 0xDBFFu; ++cp)
{
std::string json_text = "\"" + codepoint_to_unicode(cp) + "\"";
CAPTURE(json_text)
CHECK_THROWS_AS(json::parse(json_text), json::parse_error&);
}
}
SECTION("high surrogate with wrong low surrogate")
{
// D800..DBFF are high surrogates and must be followed by low
// surrogates DC00..DFFF; here a different sequence follows
for (std::size_t cp1 = 0xD800u; cp1 <= 0xDBFFu; ++cp1)
{
for (std::size_t cp2 = 0x0000u; cp2 <= 0xFFFFu; ++cp2)
{
if (0xDC00u <= cp2 && cp2 <= 0xDFFFu)
{
continue;
}
std::string json_text = "\"" + codepoint_to_unicode(cp1) + codepoint_to_unicode(cp2) + "\"";
CAPTURE(json_text)
CHECK_THROWS_AS(json::parse(json_text), json::parse_error&);
}
}
}
SECTION("low surrogate without high surrogate")
{
// low surrogates DC00..DFFF must follow high surrogates; here,
// they occur alone
for (std::size_t cp = 0xDC00u; cp <= 0xDFFFu; ++cp)
{
std::string json_text = "\"" + codepoint_to_unicode(cp) + "\"";
CAPTURE(json_text)
CHECK_THROWS_AS(json::parse(json_text), json::parse_error&);
}
}
}
#endif
}
SECTION("read all unicode characters")
{
// read a file with all unicode characters stored as single-character
// strings in a JSON array
std::ifstream f(TEST_DATA_DIRECTORY "/json_nlohmann_tests/all_unicode.json");
json j;
CHECK_NOTHROW(f >> j);
// the array has 1112064 + 1 elements (a terminating "null" value)
// Note: 1112064 = 0x1FFFFF code points - 2048 invalid values between
// 0xD800 and 0xDFFF.
CHECK(j.size() == 1112065);
SECTION("check JSON Pointers")
{
for (const auto& s : j)
{
// skip non-string JSON values
if (!s.is_string())
{
continue;
}
auto ptr = s.get<std::string>();
// tilde must be followed by 0 or 1
if (ptr == "~")
{
ptr += "0";
}
// JSON Pointers must begin with "/"
ptr.insert(0, "/");
CHECK_NOTHROW(json::json_pointer("/" + ptr));
// check escape/unescape roundtrip
auto escaped = nlohmann::detail::escape(ptr);
nlohmann::detail::unescape(escaped);
CHECK(escaped == ptr);
}
}
}
SECTION("ignore byte-order-mark")
{
SECTION("in a stream")
{
// read a file with a UTF-8 BOM
std::ifstream f(TEST_DATA_DIRECTORY "/json_nlohmann_tests/bom.json");
json j;
CHECK_NOTHROW(f >> j);
}
SECTION("with an iterator")
{
std::string i = "\xef\xbb\xbf{\n \"foo\": true\n}";
json _;
CHECK_NOTHROW(_ = json::parse(i.begin(), i.end()));
}
}
SECTION("error for incomplete/wrong BOM")
{
json _;
CHECK_THROWS_AS(_ = json::parse("\xef\xbb"), json::parse_error&);
CHECK_THROWS_AS(_ = json::parse("\xef\xbb\xbb"), json::parse_error&);
}
}
namespace
{
void roundtrip(bool success_expected, const std::string& s);
void roundtrip(bool success_expected, const std::string& s)
{
CAPTURE(s)
json _;
// create JSON string value
json j = s;
// create JSON text
std::string ps = std::string("\"") + s + "\"";
if (success_expected)
{
// serialization succeeds
CHECK_NOTHROW(j.dump());
// exclude parse test for U+0000
if (s[0] != '\0')
{
// parsing JSON text succeeds
CHECK_NOTHROW(_ = json::parse(ps));
}
// roundtrip succeeds
CHECK_NOTHROW(_ = json::parse(j.dump()));
// after roundtrip, the same string is stored
json jr = json::parse(j.dump());
CHECK(jr.get<std::string>() == s);
}
else
{
// serialization fails
CHECK_THROWS_AS(j.dump(), json::type_error&);
// parsing JSON text fails
CHECK_THROWS_AS(_ = json::parse(ps), json::parse_error&);
}
}
} // namespace
TEST_CASE("Markus Kuhn's UTF-8 decoder capability and stress test")
{
// Markus Kuhn <http://www.cl.cam.ac.uk/~mgk25/> - 2015-08-28 - CC BY 4.0
// http://www.cl.cam.ac.uk/~mgk25/ucs/examples/UTF-8-test.txt
SECTION("1 Some correct UTF-8 text")
{
roundtrip(true, "κόσμε");
}
SECTION("2 Boundary condition test cases")
{
SECTION("2.1 First possible sequence of a certain length")
{
// 2.1.1 1 byte (U-00000000)
roundtrip(true, std::string("\0", 1));
// 2.1.2 2 bytes (U-00000080)
roundtrip(true, "\xc2\x80");
// 2.1.3 3 bytes (U-00000800)
roundtrip(true, "\xe0\xa0\x80");
// 2.1.4 4 bytes (U-00010000)
roundtrip(true, "\xf0\x90\x80\x80");
// 2.1.5 5 bytes (U-00200000)
roundtrip(false, "\xF8\x88\x80\x80\x80");
// 2.1.6 6 bytes (U-04000000)
roundtrip(false, "\xFC\x84\x80\x80\x80\x80");
}
SECTION("2.2 Last possible sequence of a certain length")
{
// 2.2.1 1 byte (U-0000007F)
roundtrip(true, "\x7f");
// 2.2.2 2 bytes (U-000007FF)
roundtrip(true, "\xdf\xbf");
// 2.2.3 3 bytes (U-0000FFFF)
roundtrip(true, "\xef\xbf\xbf");
// 2.2.4 4 bytes (U-001FFFFF)
roundtrip(false, "\xF7\xBF\xBF\xBF");
// 2.2.5 5 bytes (U-03FFFFFF)
roundtrip(false, "\xFB\xBF\xBF\xBF\xBF");
// 2.2.6 6 bytes (U-7FFFFFFF)
roundtrip(false, "\xFD\xBF\xBF\xBF\xBF\xBF");
}
SECTION("2.3 Other boundary conditions")
{
// 2.3.1 U-0000D7FF = ed 9f bf
roundtrip(true, "\xed\x9f\xbf");
// 2.3.2 U-0000E000 = ee 80 80
roundtrip(true, "\xee\x80\x80");
// 2.3.3 U-0000FFFD = ef bf bd
roundtrip(true, "\xef\xbf\xbd");
// 2.3.4 U-0010FFFF = f4 8f bf bf
roundtrip(true, "\xf4\x8f\xbf\xbf");
// 2.3.5 U-00110000 = f4 90 80 80
roundtrip(false, "\xf4\x90\x80\x80");
}
}
SECTION("3 Malformed sequences")
{
SECTION("3.1 Unexpected continuation bytes")
{
// Each unexpected continuation byte should be separately signalled as a
// malformed sequence of its own.
// 3.1.1 First continuation byte 0x80
roundtrip(false, "\x80");
// 3.1.2 Last continuation byte 0xbf
roundtrip(false, "\xbf");
// 3.1.3 2 continuation bytes
roundtrip(false, "\x80\xbf");
// 3.1.4 3 continuation bytes
roundtrip(false, "\x80\xbf\x80");
// 3.1.5 4 continuation bytes
roundtrip(false, "\x80\xbf\x80\xbf");
// 3.1.6 5 continuation bytes
roundtrip(false, "\x80\xbf\x80\xbf\x80");
// 3.1.7 6 continuation bytes
roundtrip(false, "\x80\xbf\x80\xbf\x80\xbf");
// 3.1.8 7 continuation bytes
roundtrip(false, "\x80\xbf\x80\xbf\x80\xbf\x80");
// 3.1.9 Sequence of all 64 possible continuation bytes (0x80-0xbf)
roundtrip(false, "\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf");
}
SECTION("3.2 Lonely start characters")
{
// 3.2.1 All 32 first bytes of 2-byte sequences (0xc0-0xdf)
roundtrip(false, "\xc0 \xc1 \xc2 \xc3 \xc4 \xc5 \xc6 \xc7 \xc8 \xc9 \xca \xcb \xcc \xcd \xce \xcf \xd0 \xd1 \xd2 \xd3 \xd4 \xd5 \xd6 \xd7 \xd8 \xd9 \xda \xdb \xdc \xdd \xde \xdf");
// 3.2.2 All 16 first bytes of 3-byte sequences (0xe0-0xef)
roundtrip(false, "\xe0 \xe1 \xe2 \xe3 \xe4 \xe5 \xe6 \xe7 \xe8 \xe9 \xea \xeb \xec \xed \xee \xef");
// 3.2.3 All 8 first bytes of 4-byte sequences (0xf0-0xf7)
roundtrip(false, "\xf0 \xf1 \xf2 \xf3 \xf4 \xf5 \xf6 \xf7");
// 3.2.4 All 4 first bytes of 5-byte sequences (0xf8-0xfb)
roundtrip(false, "\xf8 \xf9 \xfa \xfb");
// 3.2.5 All 2 first bytes of 6-byte sequences (0xfc-0xfd)
roundtrip(false, "\xfc \xfd");
}
SECTION("3.3 Sequences with last continuation byte missing")
{
// All bytes of an incomplete sequence should be signalled as a single
// malformed sequence, i.e., you should see only a single replacement
// character in each of the next 10 tests. (Characters as in section 2)
// 3.3.1 2-byte sequence with last byte missing (U+0000)
roundtrip(false, "\xc0");
// 3.3.2 3-byte sequence with last byte missing (U+0000)
roundtrip(false, "\xe0\x80");
// 3.3.3 4-byte sequence with last byte missing (U+0000)
roundtrip(false, "\xf0\x80\x80");
// 3.3.4 5-byte sequence with last byte missing (U+0000)
roundtrip(false, "\xf8\x80\x80\x80");
// 3.3.5 6-byte sequence with last byte missing (U+0000)
roundtrip(false, "\xfc\x80\x80\x80\x80");
// 3.3.6 2-byte sequence with last byte missing (U-000007FF)
roundtrip(false, "\xdf");
// 3.3.7 3-byte sequence with last byte missing (U-0000FFFF)
roundtrip(false, "\xef\xbf");
// 3.3.8 4-byte sequence with last byte missing (U-001FFFFF)
roundtrip(false, "\xf7\xbf\xbf");
// 3.3.9 5-byte sequence with last byte missing (U-03FFFFFF)
roundtrip(false, "\xfb\xbf\xbf\xbf");
// 3.3.10 6-byte sequence with last byte missing (U-7FFFFFFF)
roundtrip(false, "\xfd\xbf\xbf\xbf\xbf");
}
SECTION("3.4 Concatenation of incomplete sequences")
{
// All the 10 sequences of 3.3 concatenated, you should see 10 malformed
// sequences being signalled:
roundtrip(false, "\xc0\xe0\x80\xf0\x80\x80\xf8\x80\x80\x80\xfc\x80\x80\x80\x80\xdf\xef\xbf\xf7\xbf\xbf\xfb\xbf\xbf\xbf\xfd\xbf\xbf\xbf\xbf");
}
SECTION("3.5 Impossible bytes")
{
// The following two bytes cannot appear in a correct UTF-8 string
// 3.5.1 fe
roundtrip(false, "\xfe");
// 3.5.2 ff
roundtrip(false, "\xff");
// 3.5.3 fe fe ff ff
roundtrip(false, "\xfe\xfe\xff\xff");
}
}
SECTION("4 Overlong sequences")
{
// The following sequences are not malformed according to the letter of
// the Unicode 2.0 standard. However, they are longer then necessary and
// a correct UTF-8 encoder is not allowed to produce them. A "safe UTF-8
// decoder" should reject them just like malformed sequences for two
// reasons: (1) It helps to debug applications if overlong sequences are
// not treated as valid representations of characters, because this helps
// to spot problems more quickly. (2) Overlong sequences provide
// alternative representations of characters, that could maliciously be
// used to bypass filters that check only for ASCII characters. For
// instance, a 2-byte encoded line feed (LF) would not be caught by a
// line counter that counts only 0x0a bytes, but it would still be
// processed as a line feed by an unsafe UTF-8 decoder later in the
// pipeline. From a security point of view, ASCII compatibility of UTF-8
// sequences means also, that ASCII characters are *only* allowed to be
// represented by ASCII bytes in the range 0x00-0x7f. To ensure this
// aspect of ASCII compatibility, use only "safe UTF-8 decoders" that
// reject overlong UTF-8 sequences for which a shorter encoding exists.
SECTION("4.1 Examples of an overlong ASCII character")
{
// With a safe UTF-8 decoder, all of the following five overlong
// representations of the ASCII character slash ("/") should be rejected
// like a malformed UTF-8 sequence, for instance by substituting it with
// a replacement character. If you see a slash below, you do not have a
// safe UTF-8 decoder!
// 4.1.1 U+002F = c0 af
roundtrip(false, "\xc0\xaf");
// 4.1.2 U+002F = e0 80 af
roundtrip(false, "\xe0\x80\xaf");
// 4.1.3 U+002F = f0 80 80 af
roundtrip(false, "\xf0\x80\x80\xaf");
// 4.1.4 U+002F = f8 80 80 80 af
roundtrip(false, "\xf8\x80\x80\x80\xaf");
// 4.1.5 U+002F = fc 80 80 80 80 af
roundtrip(false, "\xfc\x80\x80\x80\x80\xaf");
}
SECTION("4.2 Maximum overlong sequences")
{
// Below you see the highest Unicode value that is still resulting in an
// overlong sequence if represented with the given number of bytes. This
// is a boundary test for safe UTF-8 decoders. All five characters should
// be rejected like malformed UTF-8 sequences.
// 4.2.1 U-0000007F = c1 bf
roundtrip(false, "\xc1\xbf");
// 4.2.2 U-000007FF = e0 9f bf
roundtrip(false, "\xe0\x9f\xbf");
// 4.2.3 U-0000FFFF = f0 8f bf bf
roundtrip(false, "\xf0\x8f\xbf\xbf");
// 4.2.4 U-001FFFFF = f8 87 bf bf bf
roundtrip(false, "\xf8\x87\xbf\xbf\xbf");
// 4.2.5 U-03FFFFFF = fc 83 bf bf bf bf
roundtrip(false, "\xfc\x83\xbf\xbf\xbf\xbf");
}
SECTION("4.3 Overlong representation of the NUL character")
{
// The following five sequences should also be rejected like malformed
// UTF-8 sequences and should not be treated like the ASCII NUL
// character.
// 4.3.1 U+0000 = c0 80
roundtrip(false, "\xc0\x80");
// 4.3.2 U+0000 = e0 80 80
roundtrip(false, "\xe0\x80\x80");
// 4.3.3 U+0000 = f0 80 80 80
roundtrip(false, "\xf0\x80\x80\x80");
// 4.3.4 U+0000 = f8 80 80 80 80
roundtrip(false, "\xf8\x80\x80\x80\x80");
// 4.3.5 U+0000 = fc 80 80 80 80 80
roundtrip(false, "\xfc\x80\x80\x80\x80\x80");
}
}
SECTION("5 Illegal code positions")
{
// The following UTF-8 sequences should be rejected like malformed
// sequences, because they never represent valid ISO 10646 characters and
// a UTF-8 decoder that accepts them might introduce security problems
// comparable to overlong UTF-8 sequences.
SECTION("5.1 Single UTF-16 surrogates")
{
// 5.1.1 U+D800 = ed a0 80
roundtrip(false, "\xed\xa0\x80");
// 5.1.2 U+DB7F = ed ad bf
roundtrip(false, "\xed\xad\xbf");
// 5.1.3 U+DB80 = ed ae 80
roundtrip(false, "\xed\xae\x80");
// 5.1.4 U+DBFF = ed af bf
roundtrip(false, "\xed\xaf\xbf");
// 5.1.5 U+DC00 = ed b0 80
roundtrip(false, "\xed\xb0\x80");
// 5.1.6 U+DF80 = ed be 80
roundtrip(false, "\xed\xbe\x80");
// 5.1.7 U+DFFF = ed bf bf
roundtrip(false, "\xed\xbf\xbf");
}
SECTION("5.2 Paired UTF-16 surrogates")
{
// 5.2.1 U+D800 U+DC00 = ed a0 80 ed b0 80
roundtrip(false, "\xed\xa0\x80\xed\xb0\x80");
// 5.2.2 U+D800 U+DFFF = ed a0 80 ed bf bf
roundtrip(false, "\xed\xa0\x80\xed\xbf\xbf");
// 5.2.3 U+DB7F U+DC00 = ed ad bf ed b0 80
roundtrip(false, "\xed\xad\xbf\xed\xb0\x80");
// 5.2.4 U+DB7F U+DFFF = ed ad bf ed bf bf
roundtrip(false, "\xed\xad\xbf\xed\xbf\xbf");
// 5.2.5 U+DB80 U+DC00 = ed ae 80 ed b0 80
roundtrip(false, "\xed\xae\x80\xed\xb0\x80");
// 5.2.6 U+DB80 U+DFFF = ed ae 80 ed bf bf
roundtrip(false, "\xed\xae\x80\xed\xbf\xbf");
// 5.2.7 U+DBFF U+DC00 = ed af bf ed b0 80
roundtrip(false, "\xed\xaf\xbf\xed\xb0\x80");
// 5.2.8 U+DBFF U+DFFF = ed af bf ed bf bf
roundtrip(false, "\xed\xaf\xbf\xed\xbf\xbf");
}
SECTION("5.3 Noncharacter code positions")
{
// The following "noncharacters" are "reserved for internal use" by
// applications, and according to older versions of the Unicode Standard
// "should never be interchanged". Unicode Corrigendum #9 dropped the
// latter restriction. Nevertheless, their presence in incoming UTF-8 data
// can remain a potential security risk, depending on what use is made of
// these codes subsequently. Examples of such internal use:
//
// - Some file APIs with 16-bit characters may use the integer value -1
// = U+FFFF to signal an end-of-file (EOF) or error condition.
//
// - In some UTF-16 receivers, code point U+FFFE might trigger a
// byte-swap operation (to convert between UTF-16LE and UTF-16BE).
//
// With such internal use of noncharacters, it may be desirable and safer
// to block those code points in UTF-8 decoders, as they should never
// occur legitimately in incoming UTF-8 data, and could trigger unsafe
// behaviour in subsequent processing.
// Particularly problematic noncharacters in 16-bit applications:
// 5.3.1 U+FFFE = ef bf be
roundtrip(true, "\xef\xbf\xbe");
// 5.3.2 U+FFFF = ef bf bf
roundtrip(true, "\xef\xbf\xbf");
// 5.3.3 U+FDD0 .. U+FDEF
roundtrip(true, "\xEF\xB7\x90");
roundtrip(true, "\xEF\xB7\x91");
roundtrip(true, "\xEF\xB7\x92");
roundtrip(true, "\xEF\xB7\x93");
roundtrip(true, "\xEF\xB7\x94");
roundtrip(true, "\xEF\xB7\x95");
roundtrip(true, "\xEF\xB7\x96");
roundtrip(true, "\xEF\xB7\x97");
roundtrip(true, "\xEF\xB7\x98");
roundtrip(true, "\xEF\xB7\x99");
roundtrip(true, "\xEF\xB7\x9A");
roundtrip(true, "\xEF\xB7\x9B");
roundtrip(true, "\xEF\xB7\x9C");
roundtrip(true, "\xEF\xB7\x9D");
roundtrip(true, "\xEF\xB7\x9E");
roundtrip(true, "\xEF\xB7\x9F");
roundtrip(true, "\xEF\xB7\xA0");
roundtrip(true, "\xEF\xB7\xA1");
roundtrip(true, "\xEF\xB7\xA2");
roundtrip(true, "\xEF\xB7\xA3");
roundtrip(true, "\xEF\xB7\xA4");
roundtrip(true, "\xEF\xB7\xA5");
roundtrip(true, "\xEF\xB7\xA6");
roundtrip(true, "\xEF\xB7\xA7");
roundtrip(true, "\xEF\xB7\xA8");
roundtrip(true, "\xEF\xB7\xA9");
roundtrip(true, "\xEF\xB7\xAA");
roundtrip(true, "\xEF\xB7\xAB");
roundtrip(true, "\xEF\xB7\xAC");
roundtrip(true, "\xEF\xB7\xAD");
roundtrip(true, "\xEF\xB7\xAE");
roundtrip(true, "\xEF\xB7\xAF");
// 5.3.4 U+nFFFE U+nFFFF (for n = 1..10)
roundtrip(true, "\xF0\x9F\xBF\xBF");
roundtrip(true, "\xF0\xAF\xBF\xBF");
roundtrip(true, "\xF0\xBF\xBF\xBF");
roundtrip(true, "\xF1\x8F\xBF\xBF");
roundtrip(true, "\xF1\x9F\xBF\xBF");
roundtrip(true, "\xF1\xAF\xBF\xBF");
roundtrip(true, "\xF1\xBF\xBF\xBF");
roundtrip(true, "\xF2\x8F\xBF\xBF");
roundtrip(true, "\xF2\x9F\xBF\xBF");
roundtrip(true, "\xF2\xAF\xBF\xBF");
}
}
}