-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_copy_twin.py
288 lines (254 loc) · 10.7 KB
/
train_copy_twin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.autograd import Variable
import torchvision.datasets as dsets
from layer_pytorch import *
import time
import click
import numpy
import numpy as np
import os
import random
from itertools import chain
import load
import torch.nn.functional as F
# set a bunch of seeds
seed = 1234
rng = np.random.RandomState(seed)
def get_epoch_iterator(nbatch, seq_width, min_len=1, max_len=20):
for batch_num in range(500):
# All batches have the same sequence length
seq_len = rng.randint(min_len, max_len)
seq = rng.binomial(1, 0.5, (seq_len, nbatch, seq_width))
# The input includes an additional channel used for the delimiter
inp_fwd = np.zeros((seq_len + 1, nbatch, seq_width + 1))
inp_bwd = np.zeros((seq_len + 1, nbatch, seq_width + 1))
out_fwd = seq
out_bwd = seq[::-1].copy()
inp_fwd[:seq_len, :, :seq_width] = seq
inp_bwd[:seq_len, :, :seq_width] = seq
inp_fwd[seq_len, :, seq_width] = 1.0 # delimiter in our control channel
inp_bwd[seq_len, :, seq_width] = 1.0 # delimiter in our control channel
yield inp_fwd, out_fwd, inp_bwd, out_bwd
def binary_crossentropy(x, p):
return -torch.sum((torch.log(p + 1e-6) * x +
torch.log(1 - p + 1e-6) * (1. - x)), 0)
class MyLSTM(nn.Module):
def __init__(self, ninp, rnn_dim, nlayers):
super(MyLSTM, self).__init__()
self.rnns = []
for i in range(nlayers):
self.rnns.append(nn.LSTM(ninp if i == 0 else rnn_dim, rnn_dim, 1))
self.rnns = nn.ModuleList(self.rnns)
def forward(self, x, hidden):
length = x.size(0)
nlayers = len(self.rnns)
inputs = [x]
states = []
output = []
for i in range(nlayers):
vis, hid = self.rnns[i](inputs[i], (
hidden[0][i].unsqueeze(0),
hidden[1][i].unsqueeze(0)))
states.append(hid)
output.append(vis)
inputs.append(vis)
hidden = (torch.cat([s[0] for s in states], 0),
torch.cat([s[1] for s in states], 0))
return output[-1], torch.stack(output, 1), hidden
class Model(nn.Module):
def __init__(self, inp_dim, rnn_dim, nlayers, deep_out=True):
super(Model, self).__init__()
self.rnn_dim = rnn_dim
self.nlayers = nlayers
self.inp_dim = inp_dim
self.deep_out = deep_out
self.fwd_rnn = MyLSTM(inp_dim + 1, rnn_dim, nlayers)
self.bwd_rnn = MyLSTM(inp_dim + 1, rnn_dim, nlayers)
if self.deep_out:
# additional layer before the output
self.fwd_prj_prev = nn.Linear(inp_dim + 1, 512)
self.bwd_prj_prev = nn.Linear(inp_dim + 1, 512)
self.fwd_prj_out = nn.Linear(rnn_dim, 512)
self.bwd_prj_out = nn.Linear(rnn_dim, 512)
self.fwd_out = nn.Sequential(
nn.Linear(512 if deep_out else rnn_dim, inp_dim),
nn.Sigmoid())
self.bwd_out = nn.Sequential(
nn.Linear(512 if deep_out else rnn_dim, inp_dim),
nn.Sigmoid())
self.fwd_aff = nn.Linear(rnn_dim, rnn_dim)
def init_hidden(self, bsz):
weight = next(self.parameters()).data
return (Variable(weight.new(self.nlayers, bsz, self.rnn_dim).zero_()),
Variable(weight.new(self.nlayers, bsz, self.rnn_dim).zero_()))
def save(self, filename):
state = {
'nlayers': self.nlayers,
'rnn_dim': self.rnn_dim,
'deep_out': self.deep_out,
'state_dict': self.state_dict()
}
torch.save(state, filename)
@classmethod
def load(cls, filename):
state = torch.load(filename)
model = Model(
state['rnn_dim'], state['nlayers'],
deep_out=state['deep_out'])
model.load_state_dict(state['state_dict'])
return model
def rnn(self, x, hidden, forward=True):
rnn_mod = self.fwd_rnn if forward else self.bwd_rnn
out_mod = self.fwd_out if forward else self.bwd_out
bsize = x.size(1)
# run recurrent model
enc_x = x
out, vis, hidden = rnn_mod(x, hidden)
out_2d = out.view(out.size(0) * bsize, self.rnn_dim)
# compute deep output layer or simple output
if self.deep_out:
x_ = x.view(out.size(0) * bsize, x.size(2))
prv_mod = self.fwd_prj_prev if forward else self.bwd_prj_prev
prj_mod = self.fwd_prj_out if forward else self.bwd_prj_out
out_2d = F.leaky_relu(prv_mod(x_) + prj_mod(out_2d), 0.3, False)
out_2d = out_mod(out_2d)
out_2d = out_2d.view(out.size(0), bsize, self.inp_dim)
# transform forward with affine
twin_vis = vis
if forward:
vis_ = vis.view(out.size(0) * self.nlayers * bsize, self.rnn_dim)
vis_ = self.fwd_aff(vis_)
twin_vis = vis_.view(out.size(0), self.nlayers, bsize, self.rnn_dim)
return out_2d, twin_vis, hidden, enc_x
def forward(self, fwd_x, bwd_x, hidden):
#
fwd_out, _, fwd_hid, _ = self.rnn(fwd_x, hidden)
bwd_out, _, bwd_hid, _ = self.rnn(bwd_x, hidden, forward=False)
# decode
fwd_out, fwd_vis, _, _ = self.rnn(fwd_x[:-1] * 0., fwd_hid)
bwd_out, bwd_vis, _, _ = self.rnn(bwd_x[:-1] * 0., bwd_hid, forward=False)
return fwd_out, bwd_out, fwd_vis, bwd_vis
def evaluate(model, bsz, seq_width):
model.eval()
hidden = model.init_hidden(bsz)
valid_loss = []
for inf, ouf, inb, oub in get_epoch_iterator(bsz, seq_width):
inf = Variable(torch.from_numpy(inf)).float().cuda()
ouf = Variable(torch.from_numpy(ouf)).float().cuda()
inb = Variable(torch.from_numpy(inb)).float().cuda()
oub = Variable(torch.from_numpy(oub)).float().cuda()
ret = model(inf, inb, hidden)
out_binarized = ret[0].clone().data.cpu().numpy()
ouf = ouf.data.cpu().numpy()
out_binarized = (out_binarized >= 0.5).astype('int32')
# The cost is the number of error bits per sequence
cost = np.sum(np.abs(out_binarized - ouf))
valid_loss.append(cost / bsz)
return np.asarray(valid_loss).mean()
@click.command()
@click.option('--expname', default='copy_logs')
@click.option('--nlayers', default=3)
@click.option('--seq_width', default=8)
@click.option('--num_epochs', default=500)
@click.option('--rnn_dim', default=512)
@click.option('--deep_out', is_flag=True)
@click.option('--bsz', default=20)
@click.option('--lr', default=0.001)
@click.option('--twin', default=0.)
def train(expname, nlayers, seq_width, num_epochs,
rnn_dim, deep_out, bsz, lr, twin):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
log_interval = 20
model_id = 'copy_twin{}_do{}_nl{}_dim{}'.format(twin, deep_out, nlayers, rnn_dim)
if not os.path.exists(expname):
os.makedirs(expname)
log_file_name = os.path.join(expname, model_id + '.txt')
model_file_name = os.path.join(expname, model_id + '.pt')
log_file = open(log_file_name, 'w')
model = Model(seq_width, rnn_dim, nlayers, deep_out=deep_out)
model.cuda()
hidden = model.init_hidden(bsz)
opt = torch.optim.Adam(model.parameters(), lr=lr)
nbatches = 500
t = time.time()
for epoch in range(num_epochs):
step = 0
old_valid_loss = np.inf
b_fwd_loss, b_bwd_loss, b_twin_loss, b_all_loss = 0., 0., 0., 0.
model.train()
print('Epoch {}: ({})'.format(epoch, model_id.upper()))
for inf, ouf, inb, oub in get_epoch_iterator(bsz, seq_width):
inf = Variable(torch.from_numpy(inf)).float().cuda()
ouf = Variable(torch.from_numpy(ouf)).float().cuda()
inb = Variable(torch.from_numpy(inb)).float().cuda()
oub = Variable(torch.from_numpy(oub)).float().cuda()
opt.zero_grad()
fwd_out, bwd_out, fwd_vis, bwd_vis = \
model(inf, inb, hidden)
assert fwd_out.size(0) == ouf.size(0)
assert bwd_out.size(0) == oub.size(0)
assert bwd_vis.size(0) == oub.size(0)
assert fwd_vis.size(0) == oub.size(0)
assert fwd_vis.size(1) == nlayers
fwd_loss = binary_crossentropy(ouf, fwd_out).mean()
bwd_loss = binary_crossentropy(oub, bwd_out).mean()
bwd_loss = bwd_loss * (twin > 0.)
idx = np.arange(bwd_vis.size(0))[::-1].tolist()
idx = torch.LongTensor(idx)
idx = Variable(idx).cuda()
bwd_vis_inv = bwd_vis.index_select(0, idx)
# interrupt gradient here
bwd_vis_inv = bwd_vis_inv.detach()
# mean over batch, over dimensions
twin_loss = ((fwd_vis - bwd_vis_inv) ** 2).sum(0).mean()
twin_loss = twin_loss * twin
all_loss = fwd_loss + bwd_loss + twin_loss
all_loss.backward()
torch.nn.utils.clip_grad_norm(model.parameters(), 5.)
opt.step()
b_all_loss += all_loss.data[0]
b_fwd_loss += fwd_loss.data[0]
b_bwd_loss += bwd_loss.data[0]
b_twin_loss += twin_loss.data[0]
if (step + 1) % log_interval == 0:
s = time.time()
log_line = 'Epoch [%d/%d], Step [%d/%d], loss: %f, fwd loss: %f, twin loss: %f, bwd loss: %f, %.2fit/s' % (
epoch, num_epochs, step + 1, nbatches,
b_all_loss / log_interval,
b_fwd_loss / log_interval,
b_twin_loss / log_interval,
b_bwd_loss / log_interval,
log_interval / (s - t))
b_all_loss = 0.
b_fwd_loss = 0.
b_bwd_loss = 0.
b_twin_loss = 0.
t = time.time()
print(log_line)
log_file.write(log_line + '\n')
log_file.flush()
step += 1
# evaluate per epoch
print('--- Epoch finished ----')
val_loss = evaluate(model, bsz, seq_width)
log_line = 'valid -- epoch %s, cost %f' % (epoch, val_loss)
print(log_line)
log_file.write(log_line + '\n')
test_loss = evaluate(model, bsz, seq_width)
log_line = 'test -- epoch %s, cost %f' % (epoch, test_loss)
print(log_line)
log_file.write(log_line + '\n')
log_file.flush()
if old_valid_loss > val_loss:
old_valid_loss = val_loss
model.save(model_file_name)
if epoch in [5, 10, 15]:
for param_group in opt.param_groups:
lr = param_group['lr']
lr *= 0.5
param_group['lr'] = lr
if __name__ == '__main__':
train()