-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_fusion.py
207 lines (167 loc) · 8.31 KB
/
train_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import print_function
import argparse
from ast import arg
import os
import random
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import time
import math
from dataloader import list_file as lt
from dataloader import deep360_loader as DA
from models import Baseline, ModeFusion
from utils import evaluation
import prettytable as pt
from torch.utils.tensorboard import SummaryWriter
parser = argparse.ArgumentParser(description='MODE Fusion training')
parser.add_argument('--maxdepth', type=float, default=1000.0, help='maximum depth in meters')
parser.add_argument('--model', default='ModeFusion', help='select model')
parser.add_argument('--dbname', default="Deep360", help='dataset name')
parser.add_argument('--soiled', action='store_true', default=False, help='train fusion network from soiled data (only for Deep360)')
parser.add_argument('--resize', action='store_true', default=False, help='resize the input by downsampling to 1/2 of its original size')
parser.add_argument('--datapath-input', default='./outputs/Deep360PredDepth/', help='the path of the input of stage2, which is just the output of stage1')
parser.add_argument('--datapath-dataset', default='./datasets/Deep360/', help='the path of the dataset')
parser.add_argument('--epochs', type=int, default=150, help='the number of epochs for training')
parser.add_argument('--epoch-start', type=int, default=0, help='change this if the training was broken and you want to continue from the breakpoint')
parser.add_argument('--batch-size', type=int, default=4, help='batch size')
parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate')
parser.add_argument('--loadmodel', default=None, help='load model path')
parser.add_argument('--savemodel', default='./checkpoints/fusion/', help='save model path')
parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if args.dbname == 'Deep360':
train_depthes, train_confs, train_rgbs, train_gt, val_depthes, val_confs, val_rgbs, val_gt = lt.list_deep360_fusion_train(args.datapath_input, args.datapath_dataset, args.soiled)
TrainImgLoader = torch.utils.data.DataLoader(DA.Deep360DatasetFusion(train_depthes,
train_confs,
train_rgbs,
train_gt,
resize=args.resize,
training=True),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.batch_size,
drop_last=False)
ValImgLoader = torch.utils.data.DataLoader(DA.Deep360DatasetFusion(val_depthes, val_confs, val_rgbs, val_gt, resize=False, training=False), batch_size=8, shuffle=False, num_workers=8, drop_last=False)
if args.model == 'Baseline':
model = Baseline(args.maxdepth)
elif args.model == 'ModeFusion':
if args.dbname == 'Deep360':
model = ModeFusion(args.maxdepth, [32, 64, 128, 256], {'depth': 12, 'rgb': 12})
else:
print('no model')
if args.cuda:
model = nn.DataParallel(model)
model.cuda()
if args.loadmodel is not None:
print('Load pretrained model')
pretrain_dict = torch.load(args.loadmodel)
model.load_state_dict(pretrain_dict['state_dict'])
print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))
def silog_loss(lamda, pred, gt):
mask1 = gt > 0
mask2 = pred > 0
mask = mask1 * mask2
d = torch.log(pred[mask]) - torch.log(gt[mask])
return torch.mean(torch.square(d)) - lamda * torch.square(torch.mean(d))
def train(depthes, confs, rgbs, gt):
model.train()
if args.cuda:
depthes = [depth.cuda() for depth in depthes]
confs = [conf.cuda() for conf in confs]
rgbs = [rgb.cuda() for rgb in rgbs]
gt = gt.cuda()
#---------
mask = gt <= args.maxdepth # includes sky area, to exclude sky set mask=gt<args.maxdepth(when arg.maxdepth==1000)
mask.detach_()
#----
optimizer.zero_grad()
if args.model == 'Baseline':
output = model(depthes)
elif args.model == 'ModeFusion':
output = model(depthes, confs, rgbs)
output = torch.squeeze(output, 1)
loss = silog_loss(0.5, output[mask], gt[mask])
loss.backward()
optimizer.step()
return loss.data
def val(depthes, confs, rgbs, gt):
model.eval()
if args.cuda:
depthes = [depth.cuda() for depth in depthes]
confs = [conf.cuda() for conf in confs]
rgbs = [rgb.cuda() for rgb in rgbs]
gt = gt.cuda()
#---------
mask = gt <= args.maxdepth # includes sky area, to exclude sky set mask=gt<args.maxdepth
#----
with torch.no_grad():
if args.model == 'Baseline':
output = model(depthes)
elif args.model == 'ModeFusion':
output = model(depthes, confs, rgbs)
pred = torch.squeeze(output, 1)
eval_metrics = []
eval_metrics.append(evaluation.mae(pred[mask], gt[mask]))
eval_metrics.append(evaluation.rmse(pred[mask], gt[mask]))
eval_metrics.append(evaluation.absrel(pred[mask], gt[mask]))
eval_metrics.append(evaluation.sqrel(pred[mask], gt[mask]))
eval_metrics.append(evaluation.silog(pred[mask], gt[mask]))
eval_metrics.append(evaluation.delta_acc(1, pred[mask], gt[mask]))
eval_metrics.append(evaluation.delta_acc(2, pred[mask], gt[mask]))
eval_metrics.append(evaluation.delta_acc(3, pred[mask], gt[mask]))
return np.array(eval_metrics)
def adjust_learning_rate(optimizer, epoch):
lr = args.lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main():
log_path = os.path.join(args.savemodel, args.model, args.dbname, 'log')
if not os.path.exists(log_path):
os.makedirs(log_path)
writer = SummaryWriter(log_path, purge_step=args.epoch_start)
start_full_time = time.time()
for epoch in range(0, args.epochs):
print('This is %d-th epoch' % (epoch + args.epoch_start))
total_train_loss = 0
adjust_learning_rate(optimizer, epoch + args.epoch_start)
#--- TRAINING ---#
for batch_idx, (_, depthes, confs, rgbs, gt) in enumerate(TrainImgLoader):
loss = train(depthes, confs, rgbs, gt)
print("\rFusion Stage Epoch" + str(epoch + args.epoch_start) + ": {:.2f}%".format(100 * (batch_idx + 1) / len(TrainImgLoader)), end='')
total_train_loss += loss
writer.add_scalar('Training Loss', total_train_loss / len(TrainImgLoader), epoch + args.epoch_start)
#--- SAVING ---#
savefilename = os.path.join(args.savemodel, args.model, args.dbname, 'ckpt_fusion_epoch%d.tar' % (epoch + args.epoch_start))
torch.save({'state_dict': model.state_dict()}, savefilename)
#--- VALIDATION ---#
total_eval_metrics = np.zeros(8)
for batch_idx, (_, depthes, confs, rgbs, gt) in enumerate(ValImgLoader):
print("\rStage2 Epoch" + str(epoch + args.epoch_start) + ": {:.2f}%".format(100 * (batch_idx + 1) / len(ValImgLoader)), end='')
eval_metrics = val(depthes, confs, rgbs, gt)
total_eval_metrics += eval_metrics
eval_metrics = total_eval_metrics / len(ValImgLoader)
tb = pt.PrettyTable()
tb.field_names = ["MAE", "RMSE", "AbsRel", "SqRel", "SILog", "δ1 (%)", "δ2 (%)", "δ3 (%)"]
tb.add_row(list(eval_metrics))
print('\n')
print(tb)
writer.add_scalar('MAE', eval_metrics[0], epoch + args.epoch_start)
writer.add_scalar('RMSE', eval_metrics[1], epoch + args.epoch_start)
writer.add_scalar('AbsRel', eval_metrics[2], epoch + args.epoch_start)
writer.add_scalar('SqRel', eval_metrics[3], epoch + args.epoch_start)
writer.add_scalar('SILog', eval_metrics[4], epoch + args.epoch_start)
writer.add_scalar('δ1', eval_metrics[5], epoch + args.epoch_start)
print('full training time = %.2f HR' % ((time.time() - start_full_time) / 3600))
writer.close()
if __name__ == '__main__':
main()