-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlsaknn-predict-retrieve-testing.php
46 lines (38 loc) · 1.31 KB
/
lsaknn-predict-retrieve-testing.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
<?php
declare(strict_types=1);
namespace IFVABOTKNN;
require './vendor/autoload.php';
// ini_set('memory_limit', '1024M'); // or you could use 1G
ini_set('memory_limit', '-1');
use Rubix\ML\ModelManager;
use Rubix\ML\Datasets\Labeled;
use Rubix\ML\Datasets\Unlabeled;
use Rubix\ML\Datasets\Dataset;
include './fungsi.php';
include './fungsi_svd.php';
$connect = connectDB('ifva');
$json_datatraining = file_get_contents("json/datatraining.json");
$data_training = json_decode($json_datatraining, TRUE);
$red = $data_training['red'][0];
print_r("<pre>");
// print_r($red);
$json_uji = file_get_contents("json/datauji.json");
$data_uji = json_decode($json_uji, TRUE);
// print_r($data_uji);
foreach ($data_uji as $key => $value) {
$tf[$key][0] = $data_uji[$key]['tf'];
$tf_red[$key] = perkalian_matrix($tf[$key], $red);
foreach ($tf_red as $ke => $value) {
foreach ($value as $kunci => $val) {
$tf_red_normal[$ke] = minmax($val);
}
}
$labeluji[$key] = $data_uji[$key]['label'];
}
// print_r($labeluji);
$dataujired = new Labeled($tf_red_normal, $labeluji);
$modelManager = new ModelManager(); //memunculkan model latih yang disimpan
echo "<hr><pre><h1>PREDIKSI K Nearest Neighbors</h1>";
$model = $modelManager->restoreFromFile(__DIR__.'/lsaknn.model');
$predictions = $model->predict($dataujired);
print_r($predictions);