-
-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathsemcall.nim
901 lines (828 loc) · 35.2 KB
/
semcall.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements semantic checking for calls.
# included from sem.nim
from std/algorithm import sort
proc sameMethodDispatcher(a, b: PSym): bool =
result = false
if a.kind == skMethod and b.kind == skMethod:
var aa = lastSon(a.ast)
var bb = lastSon(b.ast)
if aa.kind == nkSym and bb.kind == nkSym:
if aa.sym == bb.sym:
result = true
else:
discard
# generics have no dispatcher yet, so we need to compare the method
# names; however, the names are equal anyway because otherwise we
# wouldn't even consider them to be overloaded. But even this does
# not work reliably! See tmultim6 for an example:
# method collide[T](a: TThing, b: TUnit[T]) is instantiated and not
# method collide[T](a: TUnit[T], b: TThing)! This means we need to
# *instantiate* every candidate! However, we don't keep more than 2-3
# candidates around so we cannot implement that for now. So in order
# to avoid subtle problems, the call remains ambiguous and needs to
# be disambiguated by the programmer; this way the right generic is
# instantiated.
proc determineType(c: PContext, s: PSym)
proc initCandidateSymbols(c: PContext, headSymbol: PNode,
initialBinding: PNode,
filter: TSymKinds,
best, alt: var TCandidate,
o: var TOverloadIter,
diagnostics: bool): seq[tuple[s: PSym, scope: int]] =
## puts all overloads into a seq and prepares best+alt
result = @[]
var symx = initOverloadIter(o, c, headSymbol)
while symx != nil:
if symx.kind in filter:
result.add((symx, o.lastOverloadScope))
elif symx.kind == skGenericParam:
#[
This code handles looking up a generic parameter when it's a static callable.
For instance:
proc name[T: static proc()]() = T()
name[proc() = echo"hello"]()
]#
for paramSym in searchInScopesAllCandidatesFilterBy(c, symx.name, {skConst}):
let paramTyp = paramSym.typ
if paramTyp.n.kind == nkSym and paramTyp.n.sym.kind in filter:
result.add((paramTyp.n.sym, o.lastOverloadScope))
symx = nextOverloadIter(o, c, headSymbol)
if result.len > 0:
best = initCandidate(c, result[0].s, initialBinding,
result[0].scope, diagnostics)
alt = initCandidate(c, result[0].s, initialBinding,
result[0].scope, diagnostics)
best.state = csNoMatch
proc pickBestCandidate(c: PContext, headSymbol: PNode,
n, orig: PNode,
initialBinding: PNode,
filter: TSymKinds,
best, alt: var TCandidate,
errors: var CandidateErrors,
diagnosticsFlag: bool,
errorsEnabled: bool, flags: TExprFlags) =
# `matches` may find new symbols, so keep track of count
var symCount = c.currentScope.symbols.counter
var o: TOverloadIter = default(TOverloadIter)
# https://github.com/nim-lang/Nim/issues/21272
# prevent mutation during iteration by storing them in a seq
# luckily `initCandidateSymbols` does just that
var syms = initCandidateSymbols(c, headSymbol, initialBinding, filter,
best, alt, o, diagnosticsFlag)
if len(syms) == 0:
return
# current overload being considered
var sym = syms[0].s
var scope = syms[0].scope
# starts at 1 because 0 is already done with setup, only needs checking
var nextSymIndex = 1
var z: TCandidate # current candidate
while true:
determineType(c, sym)
z = initCandidate(c, sym, initialBinding, scope, diagnosticsFlag)
# this is kinda backwards as without a check here the described
# problems in recalc would not happen, but instead it 100%
# does check forever in some cases
if c.currentScope.symbols.counter == symCount:
# may introduce new symbols with caveats described in recalc branch
matches(c, n, orig, z)
if z.state == csMatch:
# little hack so that iterators are preferred over everything else:
if sym.kind == skIterator:
if not (efWantIterator notin flags and efWantIterable in flags):
inc(z.exactMatches, 200)
else:
dec(z.exactMatches, 200)
case best.state
of csEmpty, csNoMatch: best = z
of csMatch:
var cmp = cmpCandidates(best, z)
if cmp < 0: best = z # x is better than the best so far
elif cmp == 0: alt = z # x is as good as the best so far
elif errorsEnabled or z.diagnosticsEnabled:
errors.add(CandidateError(
sym: sym,
firstMismatch: z.firstMismatch,
diagnostics: z.diagnostics))
else:
# this branch feels like a ticking timebomb
# one of two bad things could happen
# 1) new symbols are discovered but the loop ends before we recalc
# 2) new symbols are discovered and resemmed forever
# not 100% sure if these are possible though as they would rely
# on somehow introducing a new overload during overload resolution
# Symbol table has been modified. Restart and pre-calculate all syms
# before any further candidate init and compare. SLOW, but rare case.
syms = initCandidateSymbols(c, headSymbol, initialBinding, filter,
best, alt, o, diagnosticsFlag)
# reset counter because syms may be in a new order
symCount = c.currentScope.symbols.counter
nextSymIndex = 0
# just in case, should be impossible though
if syms.len == 0:
break
if nextSymIndex > high(syms):
# we have reached the end
break
# advance to next sym
sym = syms[nextSymIndex].s
scope = syms[nextSymIndex].scope
inc(nextSymIndex)
proc effectProblem(f, a: PType; result: var string; c: PContext) =
if f.kind == tyProc and a.kind == tyProc:
if tfThread in f.flags and tfThread notin a.flags:
result.add "\n This expression is not GC-safe. Annotate the " &
"proc with {.gcsafe.} to get extended error information."
elif tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags:
result.add "\n This expression can have side effects. Annotate the " &
"proc with {.noSideEffect.} to get extended error information."
else:
case compatibleEffects(f, a)
of efCompat: discard
of efRaisesDiffer:
result.add "\n The `.raises` requirements differ."
of efRaisesUnknown:
result.add "\n The `.raises` requirements differ. Annotate the " &
"proc with {.raises: [].} to get extended error information."
of efTagsDiffer:
result.add "\n The `.tags` requirements differ."
of efTagsUnknown:
result.add "\n The `.tags` requirements differ. Annotate the " &
"proc with {.tags: [].} to get extended error information."
of efEffectsDelayed:
result.add "\n The `.effectsOf` annotations differ."
of efTagsIllegal:
result.add "\n The `.forbids` requirements caught an illegal tag."
when defined(drnim):
if not c.graph.compatibleProps(c.graph, f, a):
result.add "\n The `.requires` or `.ensures` properties are incompatible."
proc renderNotLValue(n: PNode): string =
result = $n
let n = if n.kind == nkHiddenDeref: n[0] else: n
if n.kind == nkHiddenCallConv and n.len > 1:
result = $n[0] & "(" & result & ")"
elif n.kind in {nkHiddenStdConv, nkHiddenSubConv} and n.len == 2:
result = typeToString(n.typ.skipTypes(abstractVar)) & "(" & result & ")"
proc presentFailedCandidates(c: PContext, n: PNode, errors: CandidateErrors):
(TPreferedDesc, string) =
var prefer = preferName
# to avoid confusing errors like:
# got (SslPtr, SocketHandle)
# but expected one of:
# openssl.SSL_set_fd(ssl: SslPtr, fd: SocketHandle): cint
# we do a pre-analysis. If all types produce the same string, we will add
# module information.
let proto = describeArgs(c, n, 1, preferName)
for err in errors:
var errProto = ""
let n = err.sym.typ.n
for i in 1..<n.len:
var p = n[i]
if p.kind == nkSym:
errProto.add(typeToString(p.sym.typ, preferName))
if i != n.len-1: errProto.add(", ")
# else: ignore internal error as we're already in error handling mode
if errProto == proto:
prefer = preferModuleInfo
break
# we pretend procs are attached to the type of the first
# argument in order to remove plenty of candidates. This is
# comparable to what C# does and C# is doing fine.
var filterOnlyFirst = false
if optShowAllMismatches notin c.config.globalOptions and verboseTypeMismatch in c.config.legacyFeatures:
for err in errors:
if err.firstMismatch.arg > 1:
filterOnlyFirst = true
break
var maybeWrongSpace = false
var candidatesAll: seq[string] = @[]
var candidates = ""
var skipped = 0
for err in errors:
candidates.setLen 0
if filterOnlyFirst and err.firstMismatch.arg == 1:
inc skipped
continue
if verboseTypeMismatch notin c.config.legacyFeatures:
candidates.add "[" & $err.firstMismatch.arg & "] "
if err.sym.kind in routineKinds and err.sym.ast != nil:
candidates.add(renderTree(err.sym.ast,
{renderNoBody, renderNoComments, renderNoPragmas}))
else:
candidates.add(getProcHeader(c.config, err.sym, prefer))
candidates.addDeclaredLocMaybe(c.config, err.sym)
candidates.add("\n")
let nArg = if err.firstMismatch.arg < n.len: n[err.firstMismatch.arg] else: nil
let nameParam = if err.firstMismatch.formal != nil: err.firstMismatch.formal.name.s else: ""
if n.len > 1:
if verboseTypeMismatch notin c.config.legacyFeatures:
case err.firstMismatch.kind
of kUnknownNamedParam:
if nArg == nil:
candidates.add(" unknown named parameter")
else:
candidates.add(" unknown named parameter: " & $nArg[0])
candidates.add "\n"
of kAlreadyGiven:
candidates.add(" named param already provided: " & $nArg[0])
candidates.add "\n"
of kPositionalAlreadyGiven:
candidates.add(" positional param was already given as named param")
candidates.add "\n"
of kExtraArg:
candidates.add(" extra argument given")
candidates.add "\n"
of kMissingParam:
candidates.add(" missing parameter: " & nameParam)
candidates.add "\n"
of kVarNeeded:
doAssert nArg != nil
doAssert err.firstMismatch.formal != nil
candidates.add " expression '"
candidates.add renderNotLValue(nArg)
candidates.add "' is immutable, not 'var'"
candidates.add "\n"
of kTypeMismatch:
doAssert nArg != nil
let wanted = err.firstMismatch.formal.typ
doAssert err.firstMismatch.formal != nil
doAssert wanted != nil
let got = nArg.typ
if got != nil and got.kind == tyProc and wanted.kind == tyProc:
# These are proc mismatches so,
# add the extra explict detail of the mismatch
candidates.add " expression '"
candidates.add renderTree(nArg)
candidates.add "' is of type: "
candidates.addTypeDeclVerboseMaybe(c.config, got)
candidates.addPragmaAndCallConvMismatch(wanted, got, c.config)
effectProblem(wanted, got, candidates, c)
candidates.add "\n"
of kUnknown: discard "do not break 'nim check'"
else:
candidates.add(" first type mismatch at position: " & $err.firstMismatch.arg)
# candidates.add "\n reason: " & $err.firstMismatch.kind # for debugging
case err.firstMismatch.kind
of kUnknownNamedParam:
if nArg == nil:
candidates.add("\n unknown named parameter")
else:
candidates.add("\n unknown named parameter: " & $nArg[0])
of kAlreadyGiven: candidates.add("\n named param already provided: " & $nArg[0])
of kPositionalAlreadyGiven: candidates.add("\n positional param was already given as named param")
of kExtraArg: candidates.add("\n extra argument given")
of kMissingParam: candidates.add("\n missing parameter: " & nameParam)
of kTypeMismatch, kVarNeeded:
doAssert nArg != nil
let wanted = err.firstMismatch.formal.typ
doAssert err.firstMismatch.formal != nil
candidates.add("\n required type for " & nameParam & ": ")
candidates.addTypeDeclVerboseMaybe(c.config, wanted)
candidates.add "\n but expression '"
if err.firstMismatch.kind == kVarNeeded:
candidates.add renderNotLValue(nArg)
candidates.add "' is immutable, not 'var'"
else:
candidates.add renderTree(nArg)
candidates.add "' is of type: "
let got = nArg.typ
candidates.addTypeDeclVerboseMaybe(c.config, got)
doAssert wanted != nil
if got != nil:
if got.kind == tyProc and wanted.kind == tyProc:
# These are proc mismatches so,
# add the extra explict detail of the mismatch
candidates.addPragmaAndCallConvMismatch(wanted, got, c.config)
effectProblem(wanted, got, candidates, c)
of kUnknown: discard "do not break 'nim check'"
candidates.add "\n"
if err.firstMismatch.arg == 1 and nArg.kind == nkTupleConstr and
n.kind == nkCommand:
maybeWrongSpace = true
for diag in err.diagnostics:
candidates.add(diag & "\n")
candidatesAll.add candidates
candidatesAll.sort # fix #13538
candidates = join(candidatesAll)
if skipped > 0:
candidates.add($skipped & " other mismatching symbols have been " &
"suppressed; compile with --showAllMismatches:on to see them\n")
if maybeWrongSpace:
candidates.add("maybe misplaced space between " & renderTree(n[0]) & " and '(' \n")
result = (prefer, candidates)
const
errTypeMismatch = "type mismatch: got <"
errButExpected = "but expected one of:"
errExpectedPosition = "Expected one of (first mismatch at [position]):"
errUndeclaredField = "undeclared field: '$1'"
errUndeclaredRoutine = "attempting to call undeclared routine: '$1'"
errBadRoutine = "attempting to call routine: '$1'$2"
errAmbiguousCallXYZ = "ambiguous call; both $1 and $2 match for: $3"
proc describeParamList(c: PContext, n: PNode, startIdx = 1; prefer = preferName): string =
result = "Expression: " & $n
for i in startIdx..<n.len:
result.add "\n [" & $i & "] " & renderTree(n[i]) & ": "
result.add describeArg(c, n, i, startIdx, prefer)
result.add "\n"
template legacynotFoundError(c: PContext, n: PNode, errors: CandidateErrors) =
let (prefer, candidates) = presentFailedCandidates(c, n, errors)
var result = errTypeMismatch
result.add(describeArgs(c, n, 1, prefer))
result.add('>')
if candidates != "":
result.add("\n" & errButExpected & "\n" & candidates)
localError(c.config, n.info, result & "\nexpression: " & $n)
proc notFoundError*(c: PContext, n: PNode, errors: CandidateErrors) =
# Gives a detailed error message; this is separated from semOverloadedCall,
# as semOverloadedCall is already pretty slow (and we need this information
# only in case of an error).
if c.config.m.errorOutputs == {}:
# fail fast:
globalError(c.config, n.info, "type mismatch")
return
# see getMsgDiagnostic:
if nfExplicitCall notin n.flags and {nfDotField, nfDotSetter} * n.flags != {}:
let ident = considerQuotedIdent(c, n[0], n).s
let sym = n[1].typ.typSym
var typeHint = ""
if sym == nil:
discard
else:
typeHint = " for type " & getProcHeader(c.config, sym)
localError(c.config, n.info, errUndeclaredField % ident & typeHint)
return
if errors.len == 0:
if n[0].kind in nkIdentKinds:
let ident = considerQuotedIdent(c, n[0], n).s
localError(c.config, n.info, errUndeclaredRoutine % ident)
else:
localError(c.config, n.info, "expression '$1' cannot be called" % n[0].renderTree)
return
if verboseTypeMismatch in c.config.legacyFeatures:
legacynotFoundError(c, n, errors)
else:
let (prefer, candidates) = presentFailedCandidates(c, n, errors)
var result = "type mismatch\n"
result.add describeParamList(c, n, 1, prefer)
if candidates != "":
result.add("\n" & errExpectedPosition & "\n" & candidates)
localError(c.config, n.info, result)
proc bracketNotFoundError(c: PContext; n: PNode) =
var errors: CandidateErrors = @[]
var o: TOverloadIter = default(TOverloadIter)
let headSymbol = n[0]
var symx = initOverloadIter(o, c, headSymbol)
while symx != nil:
if symx.kind in routineKinds:
errors.add(CandidateError(sym: symx,
firstMismatch: MismatchInfo(),
diagnostics: @[],
enabled: false))
symx = nextOverloadIter(o, c, headSymbol)
if errors.len == 0:
localError(c.config, n.info, "could not resolve: " & $n)
else:
notFoundError(c, n, errors)
proc getMsgDiagnostic(c: PContext, flags: TExprFlags, n, f: PNode): string =
result = ""
if c.compilesContextId > 0:
# we avoid running more diagnostic when inside a `compiles(expr)`, to
# errors while running diagnostic (see test D20180828T234921), and
# also avoid slowdowns in evaluating `compiles(expr)`.
discard
else:
var o: TOverloadIter = default(TOverloadIter)
var sym = initOverloadIter(o, c, f)
while sym != nil:
result &= "\n found $1" % [getSymRepr(c.config, sym)]
sym = nextOverloadIter(o, c, f)
let ident = considerQuotedIdent(c, f, n).s
if nfExplicitCall notin n.flags and {nfDotField, nfDotSetter} * n.flags != {}:
let sym = n[1].typ.typSym
var typeHint = ""
if sym == nil:
# Perhaps we're in a `compiles(foo.bar)` expression, or
# in a concept, e.g.:
# ExplainedConcept {.explain.} = concept x
# x.foo is int
# We could use: `(c.config $ n[1].info)` to get more context.
discard
else:
typeHint = " for type " & getProcHeader(c.config, sym)
let suffix = if result.len > 0: " " & result else: ""
result = errUndeclaredField % ident & typeHint & suffix
else:
if result.len == 0: result = errUndeclaredRoutine % ident
else: result = errBadRoutine % [ident, result]
proc resolveOverloads(c: PContext, n, orig: PNode,
filter: TSymKinds, flags: TExprFlags,
errors: var CandidateErrors,
errorsEnabled: bool): TCandidate =
result = default(TCandidate)
var initialBinding: PNode
var alt: TCandidate = default(TCandidate)
var f = n[0]
if f.kind == nkBracketExpr:
# fill in the bindings:
semOpAux(c, f)
initialBinding = f
f = f[0]
else:
initialBinding = nil
pickBestCandidate(c, f, n, orig, initialBinding,
filter, result, alt, errors, efExplain in flags,
errorsEnabled, flags)
var dummyErrors: CandidateErrors = @[]
template pickSpecialOp(headSymbol) =
pickBestCandidate(c, headSymbol, n, orig, initialBinding,
filter, result, alt, dummyErrors, efExplain in flags,
false, flags)
let overloadsState = result.state
if overloadsState != csMatch:
if nfDotField in n.flags:
internalAssert c.config, f.kind == nkIdent and n.len >= 2
# leave the op head symbol empty,
# we are going to try multiple variants
n.sons[0..1] = [nil, n[1], f]
orig.sons[0..1] = [nil, orig[1], f]
template tryOp(x) =
let op = newIdentNode(getIdent(c.cache, x), n.info)
n[0] = op
orig[0] = op
pickSpecialOp(op)
if nfExplicitCall in n.flags:
tryOp ".()"
if result.state in {csEmpty, csNoMatch}:
tryOp "."
elif nfDotSetter in n.flags and f.kind == nkIdent and n.len == 3:
# we need to strip away the trailing '=' here:
let calleeName = newIdentNode(getIdent(c.cache, f.ident.s[0..^2]), n.info)
let callOp = newIdentNode(getIdent(c.cache, ".="), n.info)
n.sons[0..1] = [callOp, n[1], calleeName]
orig.sons[0..1] = [callOp, orig[1], calleeName]
pickSpecialOp(callOp)
if overloadsState == csEmpty and result.state == csEmpty:
if efNoUndeclared notin flags: # for tests/pragmas/tcustom_pragma.nim
result.state = csNoMatch
if efNoDiagnostics in flags:
return
# xxx adapt/use errorUndeclaredIdentifierHint(c, n, f.ident)
localError(c.config, n.info, getMsgDiagnostic(c, flags, n, f))
return
elif result.state != csMatch:
if nfExprCall in n.flags:
localError(c.config, n.info, "expression '$1' cannot be called" %
renderTree(n, {renderNoComments}))
else:
if {nfDotField, nfDotSetter} * n.flags != {}:
# clean up the inserted ops
n.sons.delete(2)
n[0] = f
return
if alt.state == csMatch and cmpCandidates(result, alt) == 0 and
not sameMethodDispatcher(result.calleeSym, alt.calleeSym):
internalAssert c.config, result.state == csMatch
#writeMatches(result)
#writeMatches(alt)
if c.config.m.errorOutputs == {}:
# quick error message for performance of 'compiles' built-in:
globalError(c.config, n.info, errGenerated, "ambiguous call")
elif c.config.errorCounter == 0:
# don't cascade errors
var args = "("
for i in 1..<n.len:
if i > 1: args.add(", ")
args.add(typeToString(n[i].typ))
args.add(")")
localError(c.config, n.info, errAmbiguousCallXYZ % [
getProcHeader(c.config, result.calleeSym),
getProcHeader(c.config, alt.calleeSym),
args])
proc instGenericConvertersArg*(c: PContext, a: PNode, x: TCandidate) =
let a = if a.kind == nkHiddenDeref: a[0] else: a
if a.kind == nkHiddenCallConv and a[0].kind == nkSym:
let s = a[0].sym
if s.isGenericRoutineStrict:
let finalCallee = generateInstance(c, s, x.bindings, a.info)
a[0].sym = finalCallee
a[0].typ = finalCallee.typ
#a.typ = finalCallee.typ.returnType
proc instGenericConvertersSons*(c: PContext, n: PNode, x: TCandidate) =
assert n.kind in nkCallKinds
if x.genericConverter:
for i in 1..<n.len:
instGenericConvertersArg(c, n[i], x)
proc indexTypesMatch(c: PContext, f, a: PType, arg: PNode): PNode =
var m = newCandidate(c, f)
result = paramTypesMatch(m, f, a, arg, nil)
if m.genericConverter and result != nil:
instGenericConvertersArg(c, result, m)
proc inferWithMetatype(c: PContext, formal: PType,
arg: PNode, coerceDistincts = false): PNode =
var m = newCandidate(c, formal)
m.coerceDistincts = coerceDistincts
result = paramTypesMatch(m, formal, arg.typ, arg, nil)
if m.genericConverter and result != nil:
instGenericConvertersArg(c, result, m)
if result != nil:
# This almost exactly replicates the steps taken by the compiler during
# param matching. It performs an embarrassing amount of back-and-forth
# type jugling, but it's the price to pay for consistency and correctness
result.typ = generateTypeInstance(c, m.bindings, arg.info,
formal.skipTypes({tyCompositeTypeClass}))
else:
typeMismatch(c.config, arg.info, formal, arg.typ, arg)
# error correction:
result = copyTree(arg)
result.typ = formal
proc updateDefaultParams(call: PNode) =
# In generic procs, the default parameter may be unique for each
# instantiation (see tlateboundgenericparams).
# After a call is resolved, we need to re-assign any default value
# that was used during sigmatch. sigmatch is responsible for marking
# the default params with `nfDefaultParam` and `instantiateProcType`
# computes correctly the default values for each instantiation.
let calleeParams = call[0].sym.typ.n
for i in 1..<call.len:
if nfDefaultParam in call[i].flags:
let def = calleeParams[i].sym.ast
if nfDefaultRefsParam in def.flags: call.flags.incl nfDefaultRefsParam
call[i] = def
proc getCallLineInfo(n: PNode): TLineInfo =
case n.kind
of nkAccQuoted, nkBracketExpr, nkCall, nkCallStrLit, nkCommand:
if len(n) > 0:
return getCallLineInfo(n[0])
of nkDotExpr:
if len(n) > 1:
return getCallLineInfo(n[1])
else:
discard
result = n.info
proc inheritBindings(c: PContext, x: var TCandidate, expectedType: PType) =
## Helper proc to inherit bound generic parameters from expectedType into x.
## Does nothing if 'inferGenericTypes' isn't in c.features.
if inferGenericTypes notin c.features: return
if expectedType == nil or x.callee.returnType == nil: return # required for inference
var
flatUnbound: seq[PType] = @[]
flatBound: seq[PType] = @[]
# seq[(result type, expected type)]
var typeStack = newSeq[(PType, PType)]()
template stackPut(a, b) =
## skips types and puts the skipped version on stack
# It might make sense to skip here one by one. It's not part of the main
# type reduction because the right side normally won't be skipped
const toSkip = {tyVar, tyLent, tyStatic, tyCompositeTypeClass, tySink}
let
x = a.skipTypes(toSkip)
y = if a.kind notin toSkip: b
else: b.skipTypes(toSkip)
typeStack.add((x, y))
stackPut(x.callee.returnType, expectedType)
while typeStack.len() > 0:
let (t, u) = typeStack.pop()
if t == u or t == nil or u == nil or t.kind == tyAnything or u.kind == tyAnything:
continue
case t.kind
of ConcreteTypes, tyGenericInvocation, tyUncheckedArray:
# XXX This logic makes no sense for `tyUncheckedArray`
# nested, add all the types to stack
let
startIdx = if u.kind in ConcreteTypes: 0 else: 1
endIdx = min(u.kidsLen() - startIdx, t.kidsLen())
for i in startIdx ..< endIdx:
# early exit with current impl
if t[i] == nil or u[i] == nil: return
stackPut(t[i], u[i])
of tyGenericParam:
let prebound = x.bindings.idTableGet(t)
if prebound != nil:
continue # Skip param, already bound
# fully reduced generic param, bind it
if t notin flatUnbound:
flatUnbound.add(t)
flatBound.add(u)
else:
discard
# update bindings
for i in 0 ..< flatUnbound.len():
x.bindings.idTablePut(flatUnbound[i], flatBound[i])
proc semResolvedCall(c: PContext, x: var TCandidate,
n: PNode, flags: TExprFlags;
expectedType: PType = nil): PNode =
assert x.state == csMatch
var finalCallee = x.calleeSym
let info = getCallLineInfo(n)
markUsed(c, info, finalCallee)
onUse(info, finalCallee)
assert finalCallee.ast != nil
if x.hasFauxMatch:
result = x.call
result[0] = newSymNode(finalCallee, getCallLineInfo(result[0]))
if containsGenericType(result.typ) or x.fauxMatch == tyUnknown:
result.typ = newTypeS(x.fauxMatch, c)
if result.typ.kind == tyError: incl result.typ.flags, tfCheckedForDestructor
return
let gp = finalCallee.ast[genericParamsPos]
if gp.isGenericParams:
if x.calleeSym.kind notin {skMacro, skTemplate}:
if x.calleeSym.magic in {mArrGet, mArrPut}:
finalCallee = x.calleeSym
else:
c.inheritBindings(x, expectedType)
finalCallee = generateInstance(c, x.calleeSym, x.bindings, n.info)
else:
# For macros and templates, the resolved generic params
# are added as normal params.
c.inheritBindings(x, expectedType)
for s in instantiateGenericParamList(c, gp, x.bindings):
case s.kind
of skConst:
if not s.astdef.isNil:
x.call.add s.astdef
else:
x.call.add c.graph.emptyNode
of skType:
var tn = newSymNode(s, n.info)
# this node will be used in template substitution,
# pretend this is an untyped node and let regular sem handle the type
# to prevent problems where a generic parameter is treated as a value
tn.typ = nil
x.call.add tn
else:
internalAssert c.config, false
result = x.call
instGenericConvertersSons(c, result, x)
result[0] = newSymNode(finalCallee, getCallLineInfo(result[0]))
if finalCallee.magic notin {mArrGet, mArrPut}:
result.typ = finalCallee.typ.returnType
updateDefaultParams(result)
proc canDeref(n: PNode): bool {.inline.} =
result = n.len >= 2 and (let t = n[1].typ;
t != nil and t.skipTypes({tyGenericInst, tyAlias, tySink}).kind in {tyPtr, tyRef})
proc tryDeref(n: PNode): PNode =
result = newNodeI(nkHiddenDeref, n.info)
result.typ = n.typ.skipTypes(abstractInst)[0]
result.add n
proc semOverloadedCall(c: PContext, n, nOrig: PNode,
filter: TSymKinds, flags: TExprFlags;
expectedType: PType = nil): PNode =
var errors: CandidateErrors = @[] # if efExplain in flags: @[] else: nil
var r = resolveOverloads(c, n, nOrig, filter, flags, errors, efExplain in flags)
if r.state == csMatch:
# this may be triggered, when the explain pragma is used
if errors.len > 0:
let (_, candidates) = presentFailedCandidates(c, n, errors)
message(c.config, n.info, hintUserRaw,
"Non-matching candidates for " & renderTree(n) & "\n" &
candidates)
result = semResolvedCall(c, r, n, flags, expectedType)
else:
if c.inGenericContext > 0 and c.matchedConcept == nil:
result = semGenericStmt(c, n)
result.typ = makeTypeFromExpr(c, result.copyTree)
elif efExplain notin flags:
# repeat the overload resolution,
# this time enabling all the diagnostic output (this should fail again)
result = semOverloadedCall(c, n, nOrig, filter, flags + {efExplain})
elif efNoUndeclared notin flags:
result = nil
notFoundError(c, n, errors)
else:
result = nil
proc explicitGenericInstError(c: PContext; n: PNode): PNode =
localError(c.config, getCallLineInfo(n), errCannotInstantiateX % renderTree(n))
result = n
proc explicitGenericSym(c: PContext, n: PNode, s: PSym): PNode =
# binding has to stay 'nil' for this to work!
var m = newCandidate(c, s, nil)
for i in 1..<n.len:
let formal = s.ast[genericParamsPos][i-1].typ
var arg = n[i].typ
# try transforming the argument into a static one before feeding it into
# typeRel
if formal.kind == tyStatic and arg.kind != tyStatic:
let evaluated = c.semTryConstExpr(c, n[i], n[i].typ)
if evaluated != nil:
arg = newTypeS(tyStatic, c, son = evaluated.typ)
arg.n = evaluated
let tm = typeRel(m, formal, arg)
if tm in {isNone, isConvertible}: return nil
var newInst = generateInstance(c, s, m.bindings, n.info)
newInst.typ.flags.excl tfUnresolved
let info = getCallLineInfo(n)
markUsed(c, info, s)
onUse(info, s)
result = newSymNode(newInst, info)
proc setGenericParams(c: PContext, n, expectedParams: PNode) =
## sems generic params in subscript expression
for i in 1..<n.len:
let
constraint =
if expectedParams != nil and i <= expectedParams.len:
expectedParams[i - 1].typ
else:
nil
e = semExprWithType(c, n[i], expectedType = constraint)
if e.typ == nil:
n[i].typ = errorType(c)
else:
n[i].typ = e.typ.skipTypes({tyTypeDesc})
proc explicitGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
assert n.kind == nkBracketExpr
setGenericParams(c, n, s.ast[genericParamsPos])
var s = s
var a = n[0]
if a.kind == nkSym:
# common case; check the only candidate has the right
# number of generic type parameters:
if s.ast[genericParamsPos].safeLen != n.len-1:
let expected = s.ast[genericParamsPos].safeLen
localError(c.config, getCallLineInfo(n), errGenerated, "cannot instantiate: '" & renderTree(n) &
"'; got " & $(n.len-1) & " typeof(s) but expected " & $expected)
return n
result = explicitGenericSym(c, n, s)
if result == nil: result = explicitGenericInstError(c, n)
elif a.kind in {nkClosedSymChoice, nkOpenSymChoice}:
# choose the generic proc with the proper number of type parameters.
# XXX I think this could be improved by reusing sigmatch.paramTypesMatch.
# It's good enough for now.
result = newNodeI(a.kind, getCallLineInfo(n))
for i in 0..<a.len:
var candidate = a[i].sym
if candidate.kind in {skProc, skMethod, skConverter,
skFunc, skIterator}:
# it suffices that the candidate has the proper number of generic
# type parameters:
if candidate.ast[genericParamsPos].safeLen == n.len-1:
let x = explicitGenericSym(c, n, candidate)
if x != nil: result.add(x)
# get rid of nkClosedSymChoice if not ambiguous:
if result.len == 1 and a.kind == nkClosedSymChoice:
result = result[0]
elif result.len == 0: result = explicitGenericInstError(c, n)
# candidateCount != 1: return explicitGenericInstError(c, n)
else:
result = explicitGenericInstError(c, n)
proc searchForBorrowProc(c: PContext, startScope: PScope, fn: PSym): tuple[s: PSym, state: TBorrowState] =
# Searches for the fn in the symbol table. If the parameter lists are suitable
# for borrowing the sym in the symbol table is returned, else nil.
# New approach: generate fn(x, y, z) where x, y, z have the proper types
# and use the overloading resolution mechanism:
const desiredTypes = abstractVar + {tyCompositeTypeClass} - {tyTypeDesc, tyDistinct}
template getType(isDistinct: bool; t: PType):untyped =
if isDistinct: t.baseOfDistinct(c.graph, c.idgen) else: t
result = default(tuple[s: PSym, state: TBorrowState])
var call = newNodeI(nkCall, fn.info)
var hasDistinct = false
var isDistinct: bool
var x: PType
var t: PType
call.add(newIdentNode(fn.name, fn.info))
for i in 1..<fn.typ.n.len:
let param = fn.typ.n[i]
#[.
# We only want the type not any modifiers such as `ptr`, `var`, `ref` ...
# tyCompositeTypeClass is here for
# when using something like:
type Foo[T] = distinct int
proc `$`(f: Foo): string {.borrow.}
# We want to skip the `Foo` to get `int`
]#
t = skipTypes(param.typ, desiredTypes)
isDistinct = t.kind == tyDistinct or param.typ.kind == tyDistinct
if t.kind == tyGenericInvocation and t.genericHead.last.kind == tyDistinct:
result.state = bsGeneric
return
if isDistinct: hasDistinct = true
if param.typ.kind == tyVar:
x = newTypeS(param.typ.kind, c)
x.addSonSkipIntLit(getType(isDistinct, t), c.idgen)
else:
x = getType(isDistinct, t)
var s = copySym(param.sym, c.idgen)
s.typ = x
s.info = param.info
call.add(newSymNode(s))
if hasDistinct:
let filter = if fn.kind in {skProc, skFunc}: {skProc, skFunc} else: {fn.kind}
var resolved = semOverloadedCall(c, call, call, filter, {})
if resolved != nil:
result.s = resolved[0].sym
result.state = bsMatch
if not compareTypes(result.s.typ.returnType, fn.typ.returnType, dcEqIgnoreDistinct, {IgnoreFlags}):
result.state = bsReturnNotMatch
elif result.s.magic in {mArrPut, mArrGet}:
# cannot borrow these magics for now
result.state = bsNotSupported
else:
result.state = bsNoDistinct