forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmem_categorization.rs
1264 lines (1139 loc) · 42.4 KB
/
mem_categorization.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* # Categorization
*
* The job of the categorization module is to analyze an expression to
* determine what kind of memory is used in evaluating it (for example,
* where dereferences occur and what kind of pointer is dereferenced;
* whether the memory is mutable; etc)
*
* Categorization effectively transforms all of our expressions into
* expressions of the following forms (the actual enum has many more
* possibilities, naturally, but they are all variants of these base
* forms):
*
* E = rvalue // some computed rvalue
* | x // address of a local variable, arg, or upvar
* | *E // deref of a ptr
* | E.comp // access to an interior component
*
* Imagine a routine ToAddr(Expr) that evaluates an expression and returns an
* address where the result is to be found. If Expr is an lvalue, then this
* is the address of the lvalue. If Expr is an rvalue, this is the address of
* some temporary spot in memory where the result is stored.
*
* Now, cat_expr() classies the expression Expr and the address A=ToAddr(Expr)
* as follows:
*
* - cat: what kind of expression was this? This is a subset of the
* full expression forms which only includes those that we care about
* for the purpose of the analysis.
* - mutbl: mutability of the address A
* - ty: the type of data found at the address A
*
* The resulting categorization tree differs somewhat from the expressions
* themselves. For example, auto-derefs are explicit. Also, an index a[b] is
* decomposed into two operations: a derefence to reach the array data and
* then an index to jump forward to the relevant item.
*/
use middle::ty;
use middle::typeck;
use util::ppaux::{ty_to_str, region_ptr_to_str, Repr};
use util::common::indenter;
use syntax::ast::{MutImmutable, MutMutable};
use syntax::ast;
use syntax::codemap::Span;
use syntax::print::pprust;
use syntax::parse::token;
#[deriving(Eq)]
pub enum categorization {
cat_rvalue(ty::Region), // temporary val, argument is its scope
cat_static_item,
cat_copied_upvar(CopiedUpvar), // upvar copied into @fn or ~fn env
cat_stack_upvar(cmt), // by ref upvar from ||
cat_local(ast::NodeId), // local variable
cat_arg(ast::NodeId), // formal argument
cat_deref(cmt, uint, PointerKind), // deref of a ptr
cat_interior(cmt, InteriorKind), // something interior: field, tuple, etc
cat_downcast(cmt), // selects a particular enum variant (..)
cat_discr(cmt, ast::NodeId), // match discriminant (see preserve())
cat_self(ast::NodeId), // explicit `self`
// (..) downcast is only required if the enum has more than one variant
}
#[deriving(Eq)]
pub struct CopiedUpvar {
upvar_id: ast::NodeId,
onceness: ast::Onceness,
}
// different kinds of pointers:
#[deriving(Eq, IterBytes)]
pub enum PointerKind {
uniq_ptr,
gc_ptr,
region_ptr(ast::Mutability, ty::Region),
unsafe_ptr(ast::Mutability)
}
// We use the term "interior" to mean "something reachable from the
// base without a pointer dereference", e.g. a field
#[deriving(Eq, IterBytes)]
pub enum InteriorKind {
InteriorField(FieldName),
InteriorElement(ElementKind),
}
#[deriving(Eq, IterBytes)]
pub enum FieldName {
NamedField(ast::Name),
PositionalField(uint)
}
#[deriving(Eq, IterBytes)]
pub enum ElementKind {
VecElement,
StrElement,
OtherElement,
}
#[deriving(Eq, IterBytes)]
pub enum MutabilityCategory {
McImmutable, // Immutable.
McDeclared, // Directly declared as mutable.
McInherited // Inherited from the fact that owner is mutable.
}
// `cmt`: "Category, Mutability, and Type".
//
// a complete categorization of a value indicating where it originated
// and how it is located, as well as the mutability of the memory in
// which the value is stored.
//
// *WARNING* The field `cmt.type` is NOT necessarily the same as the
// result of `node_id_to_type(cmt.id)`. This is because the `id` is
// always the `id` of the node producing the type; in an expression
// like `*x`, the type of this deref node is the deref'd type (`T`),
// but in a pattern like `@x`, the `@x` pattern is again a
// dereference, but its type is the type *before* the dereference
// (`@T`). So use `cmt.type` to find the type of the value in a consistent
// fashion. For more details, see the method `cat_pattern`
#[deriving(Eq)]
pub struct cmt_ {
id: ast::NodeId, // id of expr/pat producing this value
span: Span, // span of same expr/pat
cat: categorization, // categorization of expr
mutbl: MutabilityCategory, // mutability of expr as lvalue
ty: ty::t // type of the expr (*see WARNING above*)
}
pub type cmt = @cmt_;
// We pun on *T to mean both actual deref of a ptr as well
// as accessing of components:
pub enum deref_kind {
deref_ptr(PointerKind),
deref_interior(InteriorKind),
}
// Categorizes a derefable type. Note that we include vectors and strings as
// derefable (we model an index as the combination of a deref and then a
// pointer adjustment).
pub fn opt_deref_kind(t: ty::t) -> Option<deref_kind> {
match ty::get(t).sty {
ty::ty_uniq(_) |
ty::ty_trait(_, _, ty::UniqTraitStore, _, _) |
ty::ty_vec(_, ty::vstore_uniq) |
ty::ty_str(ty::vstore_uniq) |
ty::ty_closure(ty::ClosureTy {sigil: ast::OwnedSigil, ..}) => {
Some(deref_ptr(uniq_ptr))
}
ty::ty_rptr(r, mt) |
ty::ty_vec(mt, ty::vstore_slice(r)) => {
Some(deref_ptr(region_ptr(mt.mutbl, r)))
}
ty::ty_trait(_, _, ty::RegionTraitStore(r), m, _) => {
Some(deref_ptr(region_ptr(m, r)))
}
ty::ty_str(ty::vstore_slice(r)) |
ty::ty_closure(ty::ClosureTy {sigil: ast::BorrowedSigil,
region: r, ..}) => {
Some(deref_ptr(region_ptr(ast::MutImmutable, r)))
}
ty::ty_box(_) |
ty::ty_vec(_, ty::vstore_box) |
ty::ty_trait(_, _, ty::BoxTraitStore, _, _) |
ty::ty_str(ty::vstore_box) => {
Some(deref_ptr(gc_ptr))
}
ty::ty_ptr(ref mt) => {
Some(deref_ptr(unsafe_ptr(mt.mutbl)))
}
ty::ty_enum(..) |
ty::ty_struct(..) => { // newtype
Some(deref_interior(InteriorField(PositionalField(0))))
}
ty::ty_vec(_, ty::vstore_fixed(_)) |
ty::ty_str(ty::vstore_fixed(_)) => {
Some(deref_interior(InteriorElement(element_kind(t))))
}
_ => None
}
}
pub fn deref_kind(tcx: ty::ctxt, t: ty::t) -> deref_kind {
match opt_deref_kind(t) {
Some(k) => k,
None => {
tcx.sess.bug(
format!("deref_cat() invoked on non-derefable type {}",
ty_to_str(tcx, t)));
}
}
}
pub fn cat_expr(tcx: ty::ctxt,
method_map: typeck::method_map,
expr: &ast::Expr)
-> cmt {
let mcx = &mem_categorization_ctxt {
tcx: tcx, method_map: method_map
};
return mcx.cat_expr(expr);
}
pub fn cat_expr_unadjusted(tcx: ty::ctxt,
method_map: typeck::method_map,
expr: &ast::Expr)
-> cmt {
let mcx = &mem_categorization_ctxt {
tcx: tcx, method_map: method_map
};
return mcx.cat_expr_unadjusted(expr);
}
pub fn cat_expr_autoderefd(
tcx: ty::ctxt,
method_map: typeck::method_map,
expr: &ast::Expr,
autoderefs: uint) -> cmt
{
let mcx = &mem_categorization_ctxt {
tcx: tcx, method_map: method_map
};
return mcx.cat_expr_autoderefd(expr, autoderefs);
}
pub fn cat_def(
tcx: ty::ctxt,
method_map: typeck::method_map,
expr_id: ast::NodeId,
expr_span: Span,
expr_ty: ty::t,
def: ast::Def) -> cmt {
let mcx = &mem_categorization_ctxt {
tcx: tcx, method_map: method_map
};
return mcx.cat_def(expr_id, expr_span, expr_ty, def);
}
pub trait ast_node {
fn id(&self) -> ast::NodeId;
fn span(&self) -> Span;
}
impl ast_node for ast::Expr {
fn id(&self) -> ast::NodeId { self.id }
fn span(&self) -> Span { self.span }
}
impl ast_node for ast::Pat {
fn id(&self) -> ast::NodeId { self.id }
fn span(&self) -> Span { self.span }
}
pub struct mem_categorization_ctxt {
tcx: ty::ctxt,
method_map: typeck::method_map,
}
impl ToStr for MutabilityCategory {
fn to_str(&self) -> ~str {
format!("{:?}", *self)
}
}
impl MutabilityCategory {
pub fn from_mutbl(m: ast::Mutability) -> MutabilityCategory {
match m {
MutImmutable => McImmutable,
MutMutable => McDeclared
}
}
pub fn inherit(&self) -> MutabilityCategory {
match *self {
McImmutable => McImmutable,
McDeclared => McInherited,
McInherited => McInherited
}
}
pub fn is_mutable(&self) -> bool {
match *self {
McImmutable => false,
McDeclared | McInherited => true
}
}
pub fn is_immutable(&self) -> bool {
match *self {
McImmutable => true,
McDeclared | McInherited => false
}
}
pub fn to_user_str(&self) -> &'static str {
match *self {
McDeclared | McInherited => "mutable",
McImmutable => "immutable",
}
}
}
impl mem_categorization_ctxt {
pub fn expr_ty(&self, expr: &ast::Expr) -> ty::t {
ty::expr_ty(self.tcx, expr)
}
pub fn pat_ty(&self, pat: &ast::Pat) -> ty::t {
ty::node_id_to_type(self.tcx, pat.id)
}
pub fn cat_expr(&self, expr: &ast::Expr) -> cmt {
let adjustments = self.tcx.adjustments.borrow();
match adjustments.get().find(&expr.id) {
None => {
// No adjustments.
self.cat_expr_unadjusted(expr)
}
Some(adjustment) => {
match **adjustment {
ty::AutoObject(..) => {
// Implicity casts a concrete object to trait object
// so just patch up the type
let expr_ty = ty::expr_ty_adjusted(self.tcx, expr);
@cmt_ {
ty: expr_ty,
..*self.cat_expr_unadjusted(expr)
}
}
ty::AutoAddEnv(..) => {
// Convert a bare fn to a closure by adding NULL env.
// Result is an rvalue.
let expr_ty = ty::expr_ty_adjusted(self.tcx, expr);
self.cat_rvalue_node(expr, expr_ty)
}
ty::AutoDerefRef(ty::AutoDerefRef {
autoref: Some(_),
..}) => {
// Equivalent to &*expr or something similar.
// Result is an rvalue.
let expr_ty = ty::expr_ty_adjusted(self.tcx, expr);
self.cat_rvalue_node(expr, expr_ty)
}
ty::AutoDerefRef(ty::AutoDerefRef {
autoref: None,
autoderefs: autoderefs
}) => {
// Equivalent to *expr or something similar.
self.cat_expr_autoderefd(expr, autoderefs)
}
}
}
}
}
pub fn cat_expr_autoderefd(&self, expr: &ast::Expr, autoderefs: uint)
-> cmt {
let mut cmt = self.cat_expr_unadjusted(expr);
for deref in range(1u, autoderefs + 1) {
cmt = self.cat_deref(expr, cmt, deref);
}
return cmt;
}
pub fn cat_expr_unadjusted(&self, expr: &ast::Expr) -> cmt {
debug!("cat_expr: id={} expr={}",
expr.id, pprust::expr_to_str(expr, self.tcx.sess.intr()));
let expr_ty = self.expr_ty(expr);
match expr.node {
ast::ExprUnary(_, ast::UnDeref, e_base) => {
let method_map = self.method_map.borrow();
if method_map.get().contains_key(&expr.id) {
return self.cat_rvalue_node(expr, expr_ty);
}
let base_cmt = self.cat_expr(e_base);
self.cat_deref(expr, base_cmt, 0)
}
ast::ExprField(base, f_name, _) => {
// Method calls are now a special syntactic form,
// so `a.b` should always be a field.
let method_map = self.method_map.borrow();
assert!(!method_map.get().contains_key(&expr.id));
let base_cmt = self.cat_expr(base);
self.cat_field(expr, base_cmt, f_name, self.expr_ty(expr))
}
ast::ExprIndex(_, base, _) => {
let method_map = self.method_map.borrow();
if method_map.get().contains_key(&expr.id) {
return self.cat_rvalue_node(expr, expr_ty);
}
let base_cmt = self.cat_expr(base);
self.cat_index(expr, base_cmt, 0)
}
ast::ExprPath(_) | ast::ExprSelf => {
let def_map = self.tcx.def_map.borrow();
let def = def_map.get().get_copy(&expr.id);
self.cat_def(expr.id, expr.span, expr_ty, def)
}
ast::ExprParen(e) => self.cat_expr_unadjusted(e),
ast::ExprAddrOf(..) | ast::ExprCall(..) |
ast::ExprAssign(..) | ast::ExprAssignOp(..) |
ast::ExprFnBlock(..) | ast::ExprProc(..) | ast::ExprRet(..) |
ast::ExprDoBody(..) | ast::ExprUnary(..) |
ast::ExprMethodCall(..) | ast::ExprCast(..) | ast::ExprVstore(..) |
ast::ExprVec(..) | ast::ExprTup(..) | ast::ExprIf(..) |
ast::ExprLogLevel | ast::ExprBinary(..) | ast::ExprWhile(..) |
ast::ExprBlock(..) | ast::ExprLoop(..) | ast::ExprMatch(..) |
ast::ExprLit(..) | ast::ExprBreak(..) | ast::ExprMac(..) |
ast::ExprAgain(..) | ast::ExprStruct(..) | ast::ExprRepeat(..) |
ast::ExprInlineAsm(..) | ast::ExprBox(..) => {
return self.cat_rvalue_node(expr, expr_ty);
}
ast::ExprForLoop(..) => fail!("non-desugared expr_for_loop")
}
}
pub fn cat_def(&self,
id: ast::NodeId,
span: Span,
expr_ty: ty::t,
def: ast::Def)
-> cmt {
match def {
ast::DefFn(..) | ast::DefStaticMethod(..) | ast::DefMod(_) |
ast::DefForeignMod(_) | ast::DefStatic(_, false) |
ast::DefUse(_) | ast::DefVariant(..) |
ast::DefTrait(_) | ast::DefTy(_) | ast::DefPrimTy(_) |
ast::DefTyParam(..) | ast::DefStruct(..) |
ast::DefTyParamBinder(..) | ast::DefRegion(_) |
ast::DefLabel(_) | ast::DefSelfTy(..) | ast::DefMethod(..) => {
@cmt_ {
id:id,
span:span,
cat:cat_static_item,
mutbl: McImmutable,
ty:expr_ty
}
}
ast::DefStatic(_, true) => {
@cmt_ {
id:id,
span:span,
cat:cat_static_item,
mutbl: McDeclared,
ty:expr_ty
}
}
ast::DefArg(vid, binding_mode) => {
// Idea: make this could be rewritten to model by-ref
// stuff as `&const` and `&mut`?
// m: mutability of the argument
let m = match binding_mode {
ast::BindByValue(ast::MutMutable) => McDeclared,
_ => McImmutable
};
@cmt_ {
id: id,
span: span,
cat: cat_arg(vid),
mutbl: m,
ty:expr_ty
}
}
ast::DefSelf(self_id, mutbl) => {
@cmt_ {
id:id,
span:span,
cat:cat_self(self_id),
mutbl: if mutbl { McDeclared } else { McImmutable },
ty:expr_ty
}
}
ast::DefUpvar(upvar_id, inner, fn_node_id, _) => {
let ty = ty::node_id_to_type(self.tcx, fn_node_id);
match ty::get(ty).sty {
ty::ty_closure(ref closure_ty) => {
// Decide whether to use implicit reference or by copy/move
// capture for the upvar. This, combined with the onceness,
// determines whether the closure can move out of it.
let var_is_refd = match (closure_ty.sigil, closure_ty.onceness) {
// Many-shot stack closures can never move out.
(ast::BorrowedSigil, ast::Many) => true,
// 1-shot stack closures can move out.
(ast::BorrowedSigil, ast::Once) => false,
// Heap closures always capture by copy/move, and can
// move out if they are once.
(ast::OwnedSigil, _) |
(ast::ManagedSigil, _) => false,
};
if var_is_refd {
let upvar_cmt =
self.cat_def(id, span, expr_ty, *inner);
@cmt_ {
id:id,
span:span,
cat:cat_stack_upvar(upvar_cmt),
mutbl:upvar_cmt.mutbl.inherit(),
ty:upvar_cmt.ty
}
} else {
// FIXME #2152 allow mutation of moved upvars
@cmt_ {
id:id,
span:span,
cat:cat_copied_upvar(CopiedUpvar {
upvar_id: upvar_id,
onceness: closure_ty.onceness}),
mutbl:McImmutable,
ty:expr_ty
}
}
}
_ => {
self.tcx.sess.span_bug(
span,
format!("Upvar of non-closure {:?} - {}",
fn_node_id, ty.repr(self.tcx)));
}
}
}
ast::DefLocal(vid, binding_mode) |
ast::DefBinding(vid, binding_mode) => {
// by-value/by-ref bindings are local variables
let m = match binding_mode {
ast::BindByValue(ast::MutMutable) => McDeclared,
_ => McImmutable
};
@cmt_ {
id: id,
span: span,
cat: cat_local(vid),
mutbl: m,
ty: expr_ty
}
}
}
}
pub fn cat_rvalue_node<N:ast_node>(&self,
node: &N,
expr_ty: ty::t) -> cmt {
match self.tcx.region_maps.temporary_scope(node.id()) {
Some(scope) => {
self.cat_rvalue(node.id(), node.span(),
ty::ReScope(scope), expr_ty)
}
None => {
self.cat_rvalue(node.id(), node.span(), ty::ReStatic, expr_ty)
}
}
}
pub fn cat_rvalue(&self,
cmt_id: ast::NodeId,
span: Span,
temp_scope: ty::Region,
expr_ty: ty::t) -> cmt {
@cmt_ {
id:cmt_id,
span:span,
cat:cat_rvalue(temp_scope),
mutbl:McDeclared,
ty:expr_ty
}
}
/// inherited mutability: used in cases where the mutability of a
/// component is inherited from the base it is a part of. For
/// example, a record field is mutable if it is declared mutable
/// or if the container is mutable.
pub fn inherited_mutability(&self,
base_m: MutabilityCategory,
interior_m: ast::Mutability)
-> MutabilityCategory {
match interior_m {
MutImmutable => base_m.inherit(),
MutMutable => McDeclared
}
}
pub fn cat_field<N:ast_node>(&self,
node: &N,
base_cmt: cmt,
f_name: ast::Ident,
f_ty: ty::t)
-> cmt {
@cmt_ {
id: node.id(),
span: node.span(),
cat: cat_interior(base_cmt, InteriorField(NamedField(f_name.name))),
mutbl: base_cmt.mutbl.inherit(),
ty: f_ty
}
}
pub fn cat_deref_fn_or_obj<N:ast_node>(&self,
node: &N,
base_cmt: cmt,
deref_cnt: uint)
-> cmt {
// Bit of a hack: the "dereference" of a function pointer like
// `@fn()` is a mere logical concept. We interpret it as
// dereferencing the environment pointer; of course, we don't
// know what type lies at the other end, so we just call it
// `()` (the empty tuple).
let opaque_ty = ty::mk_tup(self.tcx, ~[]);
return self.cat_deref_common(node, base_cmt, deref_cnt, opaque_ty);
}
pub fn cat_deref<N:ast_node>(&self,
node: &N,
base_cmt: cmt,
deref_cnt: uint)
-> cmt {
let mt = match ty::deref(base_cmt.ty, true) {
Some(mt) => mt,
None => {
self.tcx.sess.span_bug(
node.span(),
format!("Explicit deref of non-derefable type: {}",
ty_to_str(self.tcx, base_cmt.ty)));
}
};
return self.cat_deref_common(node, base_cmt, deref_cnt, mt.ty);
}
pub fn cat_deref_common<N:ast_node>(&self,
node: &N,
base_cmt: cmt,
deref_cnt: uint,
deref_ty: ty::t)
-> cmt {
match deref_kind(self.tcx, base_cmt.ty) {
deref_ptr(ptr) => {
// for unique ptrs, we inherit mutability from the
// owning reference.
let m = match ptr {
uniq_ptr => {
base_cmt.mutbl.inherit()
}
gc_ptr => {
McImmutable
}
region_ptr(m, _) | unsafe_ptr(m) => {
MutabilityCategory::from_mutbl(m)
}
};
@cmt_ {
id:node.id(),
span:node.span(),
cat:cat_deref(base_cmt, deref_cnt, ptr),
mutbl:m,
ty:deref_ty
}
}
deref_interior(interior) => {
let m = base_cmt.mutbl.inherit();
@cmt_ {
id:node.id(),
span:node.span(),
cat:cat_interior(base_cmt, interior),
mutbl:m,
ty:deref_ty
}
}
}
}
pub fn cat_index<N:ast_node>(&self,
elt: &N,
base_cmt: cmt,
derefs: uint)
-> cmt {
//! Creates a cmt for an indexing operation (`[]`); this
//! indexing operation may occurs as part of an
//! AutoBorrowVec, which when converting a `~[]` to an `&[]`
//! effectively takes the address of the 0th element.
//!
//! One subtle aspect of indexing that may not be
//! immediately obvious: for anything other than a fixed-length
//! vector, an operation like `x[y]` actually consists of two
//! disjoint (from the point of view of borrowck) operations.
//! The first is a deref of `x` to create a pointer `p` that points
//! at the first element in the array. The second operation is
//! an index which adds `y*sizeof(T)` to `p` to obtain the
//! pointer to `x[y]`. `cat_index` will produce a resulting
//! cmt containing both this deref and the indexing,
//! presuming that `base_cmt` is not of fixed-length type.
//!
//! In the event that a deref is needed, the "deref count"
//! is taken from the parameter `derefs`. See the comment
//! on the def'n of `root_map_key` in borrowck/mod.rs
//! for more details about deref counts; the summary is
//! that `derefs` should be 0 for an explicit indexing
//! operation and N+1 for an indexing that is part of
//! an auto-adjustment, where N is the number of autoderefs
//! in that adjustment.
//!
//! # Parameters
//! - `elt`: the AST node being indexed
//! - `base_cmt`: the cmt of `elt`
//! - `derefs`: the deref number to be used for
//! the implicit index deref, if any (see above)
let element_ty = match ty::index(base_cmt.ty) {
Some(ref mt) => mt.ty,
None => {
self.tcx.sess.span_bug(
elt.span(),
format!("Explicit index of non-index type `{}`",
ty_to_str(self.tcx, base_cmt.ty)));
}
};
return match deref_kind(self.tcx, base_cmt.ty) {
deref_ptr(ptr) => {
// for unique ptrs, we inherit mutability from the
// owning reference.
let m = match ptr {
uniq_ptr => {
base_cmt.mutbl.inherit()
}
gc_ptr => {
McImmutable
}
region_ptr(m, _) | unsafe_ptr(m) => {
MutabilityCategory::from_mutbl(m)
}
};
// the deref is explicit in the resulting cmt
let deref_cmt = @cmt_ {
id:elt.id(),
span:elt.span(),
cat:cat_deref(base_cmt, derefs, ptr),
mutbl:m,
ty:element_ty
};
interior(elt, deref_cmt, base_cmt.ty, m, element_ty)
}
deref_interior(_) => {
// fixed-length vectors have no deref
let m = base_cmt.mutbl.inherit();
interior(elt, base_cmt, base_cmt.ty, m, element_ty)
}
};
fn interior<N: ast_node>(elt: &N,
of_cmt: cmt,
vec_ty: ty::t,
mutbl: MutabilityCategory,
element_ty: ty::t) -> cmt
{
@cmt_ {
id:elt.id(),
span:elt.span(),
cat:cat_interior(of_cmt, InteriorElement(element_kind(vec_ty))),
mutbl:mutbl,
ty:element_ty
}
}
}
pub fn cat_imm_interior<N:ast_node>(&self,
node: &N,
base_cmt: cmt,
interior_ty: ty::t,
interior: InteriorKind)
-> cmt {
@cmt_ {
id: node.id(),
span: node.span(),
cat: cat_interior(base_cmt, interior),
mutbl: base_cmt.mutbl.inherit(),
ty: interior_ty
}
}
pub fn cat_downcast<N:ast_node>(&self,
node: &N,
base_cmt: cmt,
downcast_ty: ty::t)
-> cmt {
@cmt_ {
id: node.id(),
span: node.span(),
cat: cat_downcast(base_cmt),
mutbl: base_cmt.mutbl.inherit(),
ty: downcast_ty
}
}
pub fn cat_pattern(&self,
cmt: cmt,
pat: &ast::Pat,
op: |cmt, &ast::Pat|) {
// Here, `cmt` is the categorization for the value being
// matched and pat is the pattern it is being matched against.
//
// In general, the way that this works is that we walk down
// the pattern, constructing a cmt that represents the path
// that will be taken to reach the value being matched.
//
// When we encounter named bindings, we take the cmt that has
// been built up and pass it off to guarantee_valid() so that
// we can be sure that the binding will remain valid for the
// duration of the arm.
//
// (..) There is subtlety concerning the correspondence between
// pattern ids and types as compared to *expression* ids and
// types. This is explained briefly. on the definition of the
// type `cmt`, so go off and read what it says there, then
// come back and I'll dive into a bit more detail here. :) OK,
// back?
//
// In general, the id of the cmt should be the node that
// "produces" the value---patterns aren't executable code
// exactly, but I consider them to "execute" when they match a
// value. So if you have something like:
//
// let x = @@3;
// match x {
// @@y { ... }
// }
//
// In this case, the cmt and the relevant ids would be:
//
// CMT Id Type of Id Type of cmt
//
// local(x)->@->@
// ^~~~~~~^ `x` from discr @@int @@int
// ^~~~~~~~~~^ `@@y` pattern node @@int @int
// ^~~~~~~~~~~~~^ `@y` pattern node @int int
//
// You can see that the types of the id and the cmt are in
// sync in the first line, because that id is actually the id
// of an expression. But once we get to pattern ids, the types
// step out of sync again. So you'll see below that we always
// get the type of the *subpattern* and use that.
let tcx = self.tcx;
debug!("cat_pattern: id={} pat={} cmt={}",
pat.id, pprust::pat_to_str(pat, tcx.sess.intr()),
cmt.repr(tcx));
let _i = indenter();
op(cmt, pat);
match pat.node {
ast::PatWild | ast::PatWildMulti => {
// _
}
ast::PatEnum(_, None) => {
// variant(..)
}
ast::PatEnum(_, Some(ref subpats)) => {
let def_map = self.tcx.def_map.borrow();
match def_map.get().find(&pat.id) {
Some(&ast::DefVariant(enum_did, _, _)) => {
// variant(x, y, z)
let downcast_cmt = {
if ty::enum_is_univariant(tcx, enum_did) {
cmt // univariant, no downcast needed
} else {
self.cat_downcast(pat, cmt, cmt.ty)
}
};
for (i, &subpat) in subpats.iter().enumerate() {
let subpat_ty = self.pat_ty(subpat); // see (..)
let subcmt =
self.cat_imm_interior(
pat, downcast_cmt, subpat_ty,
InteriorField(PositionalField(i)));
self.cat_pattern(subcmt, subpat, |x,y| op(x,y));
}
}
Some(&ast::DefFn(..)) |
Some(&ast::DefStruct(..)) => {
for (i, &subpat) in subpats.iter().enumerate() {
let subpat_ty = self.pat_ty(subpat); // see (..)
let cmt_field =
self.cat_imm_interior(
pat, cmt, subpat_ty,
InteriorField(PositionalField(i)));
self.cat_pattern(cmt_field, subpat, |x,y| op(x,y));
}
}
Some(&ast::DefStatic(..)) => {
for &subpat in subpats.iter() {
self.cat_pattern(cmt, subpat, |x,y| op(x,y));
}
}
_ => {
self.tcx.sess.span_bug(
pat.span,
"enum pattern didn't resolve to enum or struct");
}
}
}
ast::PatIdent(_, _, Some(subpat)) => {
self.cat_pattern(cmt, subpat, op);
}
ast::PatIdent(_, _, None) => {
// nullary variant or identifier: ignore
}
ast::PatStruct(_, ref field_pats, _) => {
// {f1: p1, ..., fN: pN}
for fp in field_pats.iter() {
let field_ty = self.pat_ty(fp.pat); // see (..)
let cmt_field = self.cat_field(pat, cmt, fp.ident, field_ty);
self.cat_pattern(cmt_field, fp.pat, |x,y| op(x,y));
}
}
ast::PatTup(ref subpats) => {
// (p1, ..., pN)
for (i, &subpat) in subpats.iter().enumerate() {
let subpat_ty = self.pat_ty(subpat); // see (..)
let subcmt =
self.cat_imm_interior(
pat, cmt, subpat_ty,
InteriorField(PositionalField(i)));
self.cat_pattern(subcmt, subpat, |x,y| op(x,y));
}
}
ast::PatUniq(subpat) | ast::PatRegion(subpat) => {
// @p1, ~p1
let subcmt = self.cat_deref(pat, cmt, 0);
self.cat_pattern(subcmt, subpat, op);
}
ast::PatVec(ref before, slice, ref after) => {
let elt_cmt = self.cat_index(pat, cmt, 0);
for &before_pat in before.iter() {
self.cat_pattern(elt_cmt, before_pat, |x,y| op(x,y));
}
for &slice_pat in slice.iter() {
let slice_ty = self.pat_ty(slice_pat);
let slice_cmt = self.cat_rvalue_node(pat, slice_ty);