-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_raw.py
executable file
·220 lines (190 loc) · 10.7 KB
/
main_raw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/python3
#
# MIT License
#
# Copyright (c) 2018 Nikhil Nayak
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Takes a raw image file and creates a tonemapped HDR from it. Requires dcraw
# and the panotools suite.
#
# Usage:
#
# ./main_raw FILE [FILE2] [FILE3] [...]
#
# It can also be imported as a module by Python 3.X programs.
import os, subprocess, sys
import statistics # And therefore we require Python 3.4.
from PIL import Image # [sudo] pip[3] install Pillow; https://python-pillow.org/
import hdr_script_generator as chs
import file_utils as fu
import logger
from logger import log_it
logger.verbosity_level = 3
shifts = range(-5, 6) # Range of Ev adjustments. This is probably the maximum plausible range from a single 12- or 14-bit raw file.
force_debug = True
def massage_file_list(selected_files):
# Massages the values in SELECTED_FILES, which is a dictionary mapping EVs to
# True/False values indicating whether they will or will not be used in the
# final image. This procedure is the last chance to tweak those use/do not use
# settings.
#
# Currently, it does nothing other than assert that there is at least one True in
# the list, but it used to also include the following lines:
#
# earliest_True = min([x for x in selected_files if selected_files[x]])
# if earliest_True > min(selected_files):
# selected_files[earliest_True-1] = True # Use one earlier photo
# latest_True = max([x for x in selected_files if selected_files[x]])
# if latest_True < max(selected_files):
# selected_files[latest_True+1] = True
assert len(selected_files) > 0, "ERROR: Unable to create any viable files from raw photo"
return selected_files
def produce_shifted_tonemap(rawfile, base_ISO, base_Ev, Ev_shift):
# Produce a TIFF-format tonemap of RAWFILE at a given EV_SHIFT relative to
# BASE_ISO. Return the name of the TIFF file so produced.
log_it("INFO: creating, tagging, and testing a file for Ev_shift %d" % Ev_shift, 2)
outfile = os.path.splitext(rawfile)[0] + ("+" if Ev_shift >= 0 else "") + str(Ev_shift) + ".jpg"
command = 'dcraw -c -v -w -W -b %s %s | cjpeg -quality 100 -dct float > %s' % (2 ** Ev_shift, rawfile, outfile)
subprocess.call(command, shell=True)
# OK, we've produced a file. Let's give it EXIF data, then adjust that data
try:
ISO = int(base_ISO) * (2 ** Ev_shift)
except BaseException as e:
ISO = 100 * (2 ** Ev_shift) # Pick a plausible value for the base
log_it("WARNING: unable to calculate real ISO because %s; using dummy ISO value %d" % (e, ISO), 3)
try:
Ev = int(base_Ev) + Ev_shift
except BaseException as e:
Ev = 8 + Ev_shift # Pick a plausible value for the base
log_it("WARNING: unable to calculate real Ev because %s; using dummy Ev value %d" % (e, Ev), 3)
command = 'exiftool -overwrite_original -tagsfromfile %s %s' % (rawfile, outfile)
subprocess.call(command, shell=True)
command = 'exiftool -overwrite_original -ISO=%d -AutoISO=%d -BaseISO=%d -MeasuredEV=%d, -MeasuredEV2=%d "%s"'
command = command % (ISO, ISO, ISO, Ev, Ev, outfile)
subprocess.call(command, shell=True)
return outfile
def get_smoothed_image_histogram(image_filename):
# Get an image brightness histogram for IMAGE_FILENAME, and then do some smoothing
# on the data so that the calling function can avoid being distracted by noise in
# the data. "Smoothing" here means "low values are dropped to zero."
#
# Returns a 256-item list, which is the pixel count for each brightness level,
# from 0 (pure black) to 255 (pure white). Note that, because smoothing works by
# swapping zeroes in for small values, the sum of the smoothed histogram values
# will often be noticeably smaller than the number of pixels in the source image.
h = Image.open(image_filename).convert('L').histogram()
minimum_threshold = (sum(h) / len(h)) - 2 * statistics.stdev(h) # threshold is 2 standard deviations below the average
h = [ v if v > minimum_threshold else 0 for v in h ] # Anything below threshold is dropped to zero
return h
clipping_threshold = 16 # If >= half the image's data is within this dist. of the relevant edge, we'll consider it clipped.
def is_right_edge_clipping(histo):
# Returns True if the histogram HISTO is clipped at the right edge, or False
# otherwise. We treat a False from this function as a criterion for detecting
# we've found the darkest image to include in the tonemap.
#
# Assumes that HISTO is a 256-item brightness histogram.
return (sum(histo[(256-clipping_threshold):]) >= sum(histo[:(256-clipping_threshold)]))
def is_left_edge_clipping(histo):
# Returns True if the histogram HISTO is clipped at the left edge, or False
# otherwise. We treat a False from this function as a criterion for detecting
# we've found the darkest image to include in the tonemap.
#
# Assumes that HISTO is a 256-item brightness histogram.
return (sum(histo[:clipping_threshold]) >= sum(histo[clipping_threshold:]))
def no_lower_quarter_data(histo):
# Detect whether all of the data in a (smoothed, presumably) brightness
# histogram is in the upper three-quarters of the brightness graph. We treat
# this as a factor in determining we've found the brightest necessary image
# for the tonemap.
return sum(histo[:63]) == 0
def hdr_script_generator(rawfile):
# Create a series of EV-shifted versions of RAWFILE, then produce a script that
# will tonemap them. Returns the filename of the script.
log_it("INFO: creating an HDR tonemapping script for raw file '%s'" % rawfile)
olddir = os.getcwd()
try:
head, tail = os.path.split(rawfile)
if head: # If we're passed in a full path to a file ...
os.chdir(os.path.dirname(rawfile))
rawfile = tail
files_to_merge = [][:]
selected_files, shift_mappings = {}.copy(), {}.copy()
original_ISO = fu.get_value_from_any_tag(fu.find_alt_version(rawfile, fu.jpeg_extensions), ['ISO', 'AutoISO', 'BaseISO'])
original_Ev = fu.get_value_from_any_tag(fu.find_alt_version(rawfile, fu.jpeg_extensions), ['MeasuredEV', 'MeasuredEV2'])
for shift_factor in shifts: # Create individual ISO-shifted files
outfile = produce_shifted_tonemap(rawfile, original_ISO, original_Ev, shift_factor)
shift_mappings[shift_factor] = outfile
# OK, let's trim the list to actually useful images
# First, start at the top and move downwards, seeking the darkest useful image.
current_shift, found_beginning, found_end = max(shifts), False, False
while current_shift >= min(shifts):
h = get_smoothed_image_histogram(shift_mappings[current_shift])
if found_end: # If we've already found the bottom image ...
os.unlink(shift_mappings[current_shift])# ... delete this image, which is past it ...
del(shift_mappings[current_shift]) # ... and track that we don't have it.
elif found_beginning: # Otherwise, check if this is the last image, i.e. 1st one w/o right-edge clipping.
if is_left_edge_clipping(h):
found_end = True
os.unlink(shift_mappings[current_shift])
del(shift_mappings[current_shift])
else:
found_beginning = not is_right_edge_clipping(h)
current_shift -= 1
# Now, start at the bottom, and find the lightest useful image
current_shift, found_beginning, found_end = min(shift_mappings.keys()), False, False
while current_shift <= max(shifts):
h = get_smoothed_image_histogram(shift_mappings[current_shift])
if found_end:
os.unlink(shift_mappings[current_shift])
del(shift_mappings[current_shift])
elif found_beginning:
if is_right_edge_clipping(h):
found_end = True
os.unlink(shift_mappings[current_shift])
del(shift_mappings[current_shift])
else:
found_beginning = not is_left_edge_clipping(h)
current_shift += 1
selected_files = list(shift_mappings.values())
selected_files = massage_file_list(selected_files)
files_to_merge = sorted(selected_files)
# Now move the non-EV-shifted file to the front of the list, because create_script_from_file_list assumes precisely that.
try: # If the unshifted image appears in the file list, use that for the base exposure
files_to_merge.insert(0, files_to_merge.pop(files_to_merge.index(os.path.splitext(rawfile)[0] + "+0.jpg")))
except ValueError: # Otherwise, just sort the list, which does a fairly good job of picking a low value for the front.
files_to_merge.sort()
chs.create_script_from_file_list(files_to_merge, delete_originals=True, suppress_align=True)
return os.path.abspath(os.path.splitext(files_to_merge[0])[0] + '_HDR.SH')
finally:
os.chdir(olddir)
def HDR_tonemap_from_raw(rawfile):
# Write an HDR-creation script for RAWFILE, then run it.
raw_script = hdr_script_generator(rawfile)
subprocess.call(os.path.abspath(raw_script), shell=True)
if __name__ == "__main__":
if force_debug:
import glob
sys.argv[1:] = sorted(glob.glob('/home/nikhil/Desktop/working/temp/*CR2'))
if len(sys.argv) == 1 or sys.argv[1] in ['--help', '-h']:
print(__doc__)
sys.exit(0)
for whichfile in sys.argv[1:] :
HDR_tonemap_from_raw(whichfile)