-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiagan.py
289 lines (248 loc) · 9.94 KB
/
iagan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import argparse
import os
import shutil
import warnings
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
from forward_model import GaussianCompressiveSensing
from model.began import Generator128
from model.dcgan import Generator as dcgan_generator
from model.vae import VAE
from utils import (dict_to_str, get_z_vector, load_target_image,
load_trained_net, psnr_from_mse)
warnings.filterwarnings("ignore")
def _iagan_recover(
x,
gen,
forward_model,
optimizer_type='adam',
mode='clamped_normal',
limit=1,
z_lr1=1e-4,
z_lr2=1e-5,
model_lr=1e-5,
z_steps1=1600,
z_steps2=3000,
run_dir=None, # IAGAN
run_name=None, # datetime or config
disable_tqdm=False,
**kwargs):
# Keep batch_size = 1
batch_size = 1
z1_dim, z2_dim = gen.input_shapes[0] # n_cuts = 0
if (isinstance(forward_model, GaussianCompressiveSensing)):
n_pixel_bora = 64 * 64 * 3
n_pixel = np.prod(x.shape)
noise = torch.randn(batch_size,
forward_model.n_measure,
device=x.device)
noise *= 0.1 * torch.sqrt(
torch.tensor(n_pixel / forward_model.n_measure / n_pixel_bora))
# z1 is the actual latent code.
# z2 is the additional input for n_cuts logic (not used here)
z1 = torch.nn.Parameter(
get_z_vector((batch_size, *z1_dim),
mode=mode,
limit=limit,
device=x.device))
params = [z1]
if len(z2_dim) > 0:
z2 = torch.nn.Parameter(
get_z_vector((batch_size, *z2_dim),
mode=mode,
limit=limit,
device=x.device))
params.append(z2)
else:
z2 = None
if optimizer_type == 'adam':
optimizer_z = torch.optim.Adam([z1], lr=z_lr1)
optimizer_model = torch.optim.Adam(gen.parameters(), lr=model_lr)
else:
raise NotImplementedError()
if run_name is not None:
logdir = os.path.join('recovery_tensorboard_logs', run_dir, run_name)
if os.path.exists(logdir):
print("Overwriting pre-existing logs!")
shutil.rmtree(logdir)
writer = SummaryWriter(logdir)
# Save original and distorted image
if run_name is not None:
writer.add_image("Original/Clamp", x.clamp(0, 1))
if forward_model.viewable:
writer.add_image(
"Distorted/Clamp",
forward_model(x.unsqueeze(0).clamp(0, 1)).squeeze(0))
# Make noisy gaussian measurements
x = x.expand(batch_size, *x.shape)
y_observed = forward_model(x)
if (isinstance(forward_model, GaussianCompressiveSensing)):
y_observed += noise
# Stage 1: optimize latent code only
save_img_every_n = 50
for j in trange(z_steps1, desc='Stage1', leave=False):
optimizer_z.zero_grad()
x_hat = gen.forward(z1, z2, n_cuts=0, **kwargs)
if gen.rescale:
x_hat = (x_hat + 1) / 2
train_mse = F.mse_loss(forward_model(x_hat), y_observed)
train_mse.backward()
optimizer_z.step()
train_mse_clamped = F.mse_loss(
forward_model(x_hat.detach().clamp(0, 1)), y_observed)
orig_mse_clamped = F.mse_loss(x_hat.detach().clamp(0, 1), x)
if run_name is not None and j == 0:
writer.add_image('Stage1/Start', x_hat.squeeze().clamp(0, 1))
if run_name is not None:
writer.add_scalar('Stage1/TRAIN_MSE', train_mse_clamped, j + 1)
writer.add_scalar('Stage1/ORIG_MSE', orig_mse_clamped, j + 1)
writer.add_scalar('Stage1/ORIG_PSNR',
psnr_from_mse(orig_mse_clamped), j + 1)
if j % save_img_every_n == 0:
writer.add_image('Stage1/Recovered',
x_hat.squeeze().clamp(0, 1), j + 1)
if run_name is not None:
writer.add_image('Stage1_Final', x_hat.squeeze().clamp(0, 1))
# Stage 2: optimize latent code and model
save_img_every_n = 20
optimizer_z = torch.optim.Adam([z1], lr=z_lr2)
for j in trange(z_steps2, desc='Stage2', leave=False):
optimizer_z.zero_grad()
optimizer_model.zero_grad()
x_hat = gen.forward(z1, z2, n_cuts=0, **kwargs)
if gen.rescale:
x_hat = (x_hat + 1) / 2
train_mse = F.mse_loss(forward_model(x_hat), y_observed)
train_mse.backward()
optimizer_z.step()
optimizer_model.step()
train_mse_clamped = F.mse_loss(
forward_model(x_hat.detach().clamp(0, 1)), y_observed)
orig_mse_clamped = F.mse_loss(x_hat.detach().clamp(0, 1), x)
if run_name is not None and j == 0:
writer.add_image('Stage2/Start', x_hat.squeeze().clamp(0, 1))
if run_name is not None:
writer.add_scalar('Stage2/TRAIN_MSE', train_mse_clamped, j + 1)
writer.add_scalar('Stage2/ORIG_MSE', orig_mse_clamped, j + 1)
writer.add_scalar('Stage2/ORIG_PSNR',
psnr_from_mse(orig_mse_clamped), j + 1)
if j % save_img_every_n == 0:
writer.add_image('Stage2/Recovered',
x_hat.squeeze().clamp(0, 1), j + 1)
if run_name is not None:
writer.add_image('Stage2_Final', x_hat.squeeze().clamp(0, 1))
return x_hat.squeeze(), forward_model(x).squeeze(), train_mse_clamped
def iagan_recover(x,
gen,
forward_model,
optimizer_type,
mode='clamped_normal',
limit=1,
z_lr1=1e-4,
z_lr2=1e-5,
model_lr=1e-5,
z_steps1=1600,
z_steps2=3000,
restarts=1,
run_dir=None,
run_name=None,
disable_tqdm=False,
**kwargs):
best_psnr = -float("inf")
best_return_val = None
for i in trange(restarts,
desc='Restarts',
leave=False,
disable=disable_tqdm):
if run_name is not None:
current_run_name = f'{run_name}_{i}'
else:
current_run_name = None
return_val = _iagan_recover(x=x,
gen=gen,
forward_model=forward_model,
optimizer_type=optimizer_type,
mode=mode,
limit=limit,
z_lr1=z_lr1,
z_lr2=z_lr2,
model_lr=model_lr,
z_steps1=z_steps1,
z_steps2=z_steps2,
run_dir=run_dir,
run_name=current_run_name,
disable_tqdm=disable_tqdm,
**kwargs)
p = psnr_from_mse(return_val[2])
if p > best_psnr:
best_psnr = p
best_return_val = return_val
return best_return_val
if __name__ == '__main__':
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
a = argparse.ArgumentParser()
a.add_argument('--img_dir', required=True)
a.add_argument('--disable_tqdm', default=False)
a.add_argument('--run_name_suffix', default='')
args = a.parse_args()
params = {
'z_lr1': 1e-4,
'z_lr2': 1e-5,
'model_lr': 1e-5,
'z_steps1': 1600,
'z_steps2': 3000,
}
def reset_gen(model):
if model == 'began':
gen = Generator128(64)
gen = load_trained_net(
gen,
('./checkpoints/celeba_began.withskips.bs32.cosine.min=0.25'
'.n_cuts=0/gen_ckpt.49.pt'))
gen = gen.eval().to(DEVICE)
img_size = 128
elif model == 'vae':
gen = VAE()
t = torch.load('./vae_checkpoints/vae_bs=128_beta=1.0/epoch_19.pt')
gen.load_state_dict(t)
gen = gen.eval().to(DEVICE)
gen = gen.decoder
img_size = 128
elif model == 'dcgan':
gen = dcgan_generator()
t = torch.load(('./dcgan_checkpoints/netG.epoch_24.n_cuts_0.bs_64'
'.b1_0.5.lr_0.0002.pt'))
gen.load_state_dict(t)
gen = gen.eval().to(DEVICE)
img_size = 64
return gen, img_size
for model in tqdm(['dcgan', 'vae', 'began'], desc='Models', leave=True):
gen, img_size = reset_gen(model)
if img_size == 64:
n_measures = [600, 2000]
else:
n_measures = [2400, 8000]
for n_measure in tqdm(n_measures, desc='N_measures', leave=False):
img_shape = (3, img_size, img_size)
forward_model = GaussianCompressiveSensing(n_measure=n_measure,
img_shape=img_shape)
# forward_model = NoOp()
for img_name in tqdm(os.listdir(args.img_dir),
desc='Images',
leave=False,
disable=args.disable_tqdm):
gen, img_size = reset_gen(model)
orig_img = load_target_image(
os.path.join(args.img_dir, img_name), img_size).to(DEVICE)
img_basename, _ = os.path.splitext(img_name)
x_hat, x_degraded, _ = iagan_recover(
orig_img,
gen,
forward_model,
run_dir='iagan',
run_name=(img_basename + args.run_name_suffix +
dict_to_str(params)),
**params)