-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmisc.py
267 lines (179 loc) · 6.54 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""
@Time : 9/15/19 10:19
@Author : TaylorMei
@Email : mhy666@mail.dlut.edu.cn
@Project : ICCV2019_MirrorNet
@File : misc.py
@Function: functions.
"""
import numpy as np
import os
import skimage.io
import skimage.transform
import xlwt
import pydensecrf.densecrf as dcrf
################################################################
######################## Train & Test ##########################
################################################################
class AvgMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def check_mkdir(dir_name):
if not os.path.exists(dir_name):
os.mkdir(dir_name)
def _sigmoid(x):
return 1 / (1 + np.exp(-x))
def crf_refine(img, annos):
assert img.dtype == np.uint8
assert annos.dtype == np.uint8
assert img.shape[:2] == annos.shape
# img and annos should be np array with data type uint8
EPSILON = 1e-8
M = 2 # salient or not
tau = 1.05
# Setup the CRF model
d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], M)
anno_norm = annos / 255.0
n_energy = -np.log((1.0 - anno_norm + EPSILON)) / (tau * _sigmoid(1 - anno_norm))
p_energy = -np.log(anno_norm + EPSILON) / (tau * _sigmoid(anno_norm))
U = np.zeros((M, img.shape[0] * img.shape[1]), dtype="float32")
U[0, :] = n_energy.flatten()
U[1, :] = p_energy.flatten()
d.setUnaryEnergy(U)
d.addPairwiseGaussian(sxy=3, compat=3)
d.addPairwiseBilateral(sxy=60, srgb=5, rgbim=img, compat=5)
# Do the inference
infer = np.array(d.inference(1)).astype("float32")
res = infer[1, :]
res = res * 255
res = res.reshape(img.shape[:2])
return res.astype("uint8")
################################################################
######################## Evaluation ############################
################################################################
def data_write(file_path, datas):
f = xlwt.Workbook()
sheet1 = f.add_sheet(sheetname="sheet1", cell_overwrite_ok=True)
j = 0
for data in datas:
for i in range(len(data)):
sheet1.write(i, j, data[i])
j = j + 1
f.save(file_path)
def get_gt_mask(imgname, MASK_DIR):
filestr = imgname[:-4]
mask_folder = MASK_DIR
mask_path = mask_folder + "/" + filestr + ".png"
mask = skimage.io.imread(mask_path)
mask = np.where(mask == 255, 1, 0).astype(np.float32)
return mask
def get_normalized_predict_mask(imgname, PREDICT_MASK_DIR):
filestr = imgname[:-4]
mask_folder = PREDICT_MASK_DIR
mask_path = mask_folder + "/" + filestr + ".png"
if not os.path.exists(mask_path):
print("{} has no predict mask!".format(imgname))
mask = skimage.io.imread(mask_path).astype(np.float32)
if np.max(mask) > 0:
mask = (mask - np.min(mask)) / (np.max(mask) - np.min(mask))
mask = mask.astype(np.float32)
return mask
def get_binary_predict_mask(imgname, PREDICT_MASK_DIR):
filestr = imgname[:-4]
mask_folder = PREDICT_MASK_DIR
mask_path = mask_folder + "/" + filestr + ".png"
if not os.path.exists(mask_path):
print("{} has no predict mask!".format(imgname))
mask = skimage.io.imread(mask_path).astype(np.float32)
mask = np.where(mask >= 127.5, 1, 0).astype(np.float32)
return mask
def compute_iou(predict_mask, gt_mask):
"""
(1/n_cl) * sum_i(n_ii / (t_i + sum_j(n_ji) - n_ii))
Here, n_cl = 1 as we have only one class (mirror).
"""
check_size(predict_mask, gt_mask)
if np.sum(predict_mask) == 0 or np.sum(gt_mask) == 0:
iou_ = 0
return iou_
n_ii = np.sum(np.logical_and(predict_mask, gt_mask))
t_i = np.sum(gt_mask)
n_ij = np.sum(predict_mask)
iou_ = n_ii / (t_i + n_ij - n_ii)
return iou_
def compute_acc_mirror(predict_mask, gt_mask):
check_size(predict_mask, gt_mask)
N_p = np.sum(gt_mask)
N_n = np.sum(np.logical_not(gt_mask))
TP = np.sum(np.logical_and(predict_mask, gt_mask))
TN = np.sum(np.logical_and(np.logical_not(predict_mask), np.logical_not(gt_mask)))
accuracy_ = TP / N_p
return accuracy_
def compute_acc_image(predict_mask, gt_mask):
check_size(predict_mask, gt_mask)
N_p = np.sum(gt_mask)
N_n = np.sum(np.logical_not(gt_mask))
TP = np.sum(np.logical_and(predict_mask, gt_mask))
TN = np.sum(np.logical_and(np.logical_not(predict_mask), np.logical_not(gt_mask)))
accuracy_ = (TP + TN) / (N_p + N_n)
return accuracy_
def compute_mae(predict_mask, gt_mask):
check_size(predict_mask, gt_mask)
N_p = np.sum(gt_mask)
N_n = np.sum(np.logical_not(gt_mask))
mae_ = np.mean(abs(predict_mask - gt_mask)).item()
return mae_
def compute_ber(predict_mask, gt_mask):
check_size(predict_mask, gt_mask)
N_p = np.sum(gt_mask)
N_n = np.sum(np.logical_not(gt_mask))
TP = np.sum(np.logical_and(predict_mask, gt_mask))
TN = np.sum(np.logical_and(np.logical_not(predict_mask), np.logical_not(gt_mask)))
ber_ = 1 - (1 / 2) * ((TP / N_p) + (TN / N_n))
return ber_
def segm_size(segm):
try:
height = segm.shape[0]
width = segm.shape[1]
except IndexError:
raise
return height, width
def check_size(eval_segm, gt_segm):
h_e, w_e = segm_size(eval_segm)
h_g, w_g = segm_size(gt_segm)
if (h_e != h_g) or (w_e != w_g):
raise EvalSegErr("DiffDim: Different dimensions of matrices!")
def compute_f1_score(predict_mask, gt_mask):
"""
Compute F1 Score for the given prediction and ground truth masks.
"""
# Check if the dimensions of the prediction and ground truth are the same
check_size(predict_mask, gt_mask)
# Calculate True Positives (TP), False Positives (FP), and False Negatives (FN)
TP = np.sum(np.logical_and(predict_mask == 1, gt_mask == 1))
FP = np.sum(np.logical_and(predict_mask == 1, gt_mask == 0))
FN = np.sum(np.logical_and(predict_mask == 0, gt_mask == 1))
# Calculate Precision and Recall
Precision = TP / (TP + FP) if (TP + FP) > 0 else 0
Recall = TP / (TP + FN) if (TP + FN) > 0 else 0
# Calculate F1 Score
if (Precision + Recall) == 0:
F1 = 0
else:
F1 = 2 * (Precision * Recall) / (Precision + Recall)
return F1
class EvalSegErr(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return repr(self.value)