|
| 1 | +use crate::instructions::AllocateCpiAccounts; |
| 2 | + |
| 3 | +impl<'a, 'b> AllocateCpiAccounts<'a, 'b> { |
| 4 | + /// Invokes the `Allocate` instruction. |
| 5 | + /// |
| 6 | + /// This invocation expects the instruction data to be directly provided, which |
| 7 | + /// will save CU compared to a Borsh equivalent. In most cases, the instruction |
| 8 | + /// data will be generated using `allocate_instruction_data!` macro. |
| 9 | + #[inline(always)] |
| 10 | + pub fn invoke( |
| 11 | + &self, |
| 12 | + program: &'b solana_program::account_info::AccountInfo<'a>, |
| 13 | + instruction_data: Vec<u8>, |
| 14 | + ) -> solana_program::entrypoint::ProgramResult { |
| 15 | + self.invoke_signed(program, instruction_data, &[]) |
| 16 | + } |
| 17 | + |
| 18 | + /// Invokes the `Allocate` instruction with the specified signers. |
| 19 | + /// |
| 20 | + /// This invocation expects the instruction data to be directly provided, which |
| 21 | + /// will save CU compared to a Borsh equivalent. In most cases, the instruction |
| 22 | + /// data will be generated using `allocate_instruction_data!` macro. |
| 23 | + #[inline(always)] |
| 24 | + pub fn invoke_signed( |
| 25 | + &self, |
| 26 | + program: &'b solana_program::account_info::AccountInfo<'a>, |
| 27 | + instruction_data: Vec<u8>, |
| 28 | + signers_seeds: &[&[&[u8]]], |
| 29 | + ) -> solana_program::entrypoint::ProgramResult { |
| 30 | + let accounts = vec![ |
| 31 | + solana_program::instruction::AccountMeta::new(*self.asset.key, true), |
| 32 | + if let Some(payer) = self.payer { |
| 33 | + solana_program::instruction::AccountMeta::new(*payer.key, true) |
| 34 | + } else { |
| 35 | + solana_program::instruction::AccountMeta::new_readonly(crate::ASSET_ID, false) |
| 36 | + }, |
| 37 | + if let Some(system_program) = self.system_program { |
| 38 | + solana_program::instruction::AccountMeta::new_readonly(*system_program.key, false) |
| 39 | + } else { |
| 40 | + solana_program::instruction::AccountMeta::new_readonly(crate::ASSET_ID, false) |
| 41 | + }, |
| 42 | + ]; |
| 43 | + |
| 44 | + let instruction = solana_program::instruction::Instruction { |
| 45 | + program_id: crate::ASSET_ID, |
| 46 | + accounts, |
| 47 | + data: instruction_data, |
| 48 | + }; |
| 49 | + let mut account_infos = Vec::with_capacity(4); |
| 50 | + account_infos.push(program.clone()); |
| 51 | + account_infos.push(self.asset.clone()); |
| 52 | + if let Some(payer) = self.payer { |
| 53 | + account_infos.push(payer.clone()); |
| 54 | + } |
| 55 | + if let Some(system_program) = self.system_program { |
| 56 | + account_infos.push(system_program.clone()); |
| 57 | + } |
| 58 | + |
| 59 | + if signers_seeds.is_empty() { |
| 60 | + solana_program::program::invoke(&instruction, &account_infos) |
| 61 | + } else { |
| 62 | + solana_program::program::invoke_signed(&instruction, &account_infos, signers_seeds) |
| 63 | + } |
| 64 | + } |
| 65 | +} |
| 66 | + |
| 67 | +/// Convenience macro to create the instruction data for the `Allocate` instruction. |
| 68 | +/// |
| 69 | +/// There are two forms of this macro and they vary based on how the extension data |
| 70 | +/// is provided: |
| 71 | +/// |
| 72 | +/// 1. You can provide the data directly as a byte slice; |
| 73 | +/// 2. You can provide the length of the data and the instruction data will have the |
| 74 | +/// correct capacity. This is useful when you want to write the data (bytes) iteratively |
| 75 | +/// without having to allocate a new `Vec` for it. |
| 76 | +/// |
| 77 | +/// # Arguments |
| 78 | +/// |
| 79 | +/// 1. `extension_type` - the type ([`ExtensionType`]) of the extension. |
| 80 | +/// 2. `length` - expression representing the length of the extension data. |
| 81 | +/// 3. `data` - (optional) the extension data as a byte slice. |
| 82 | +#[macro_export] |
| 83 | +macro_rules! allocate_instruction_data { |
| 84 | + ( $extension_type:expr, $length:expr, $data:tt ) => {{ |
| 85 | + let discriminator: u8 = 4; |
| 86 | + |
| 87 | + let mut size = std::mem::size_of::<u8>() // discriminator |
| 88 | + + std::mem::size_of::<u8>() // extension type |
| 89 | + + std::mem::size_of::<u32>() // length |
| 90 | + + std::mem::size_of::<u8>() // option |
| 91 | + + std::mem::size_of::<u32>() // data length |
| 92 | + + $data.len(); // data |
| 93 | + |
| 94 | + let mut instruction_data = Vec::with_capacity(size); |
| 95 | + instruction_data.push(discriminator); |
| 96 | + instruction_data.push($extension_type as u8); |
| 97 | + instruction_data.extend_from_slice(&u32::to_le_bytes($length as u32)); |
| 98 | + instruction_data.push(1); |
| 99 | + instruction_data.extend_from_slice(&u32::to_le_bytes($data.len() as u32)); |
| 100 | + instruction_data.extend_from_slice($data); |
| 101 | + |
| 102 | + instruction_data |
| 103 | + }}; |
| 104 | + |
| 105 | + ( $extension_type:expr, $length:expr ) => {{ |
| 106 | + let discriminator: u8 = 4; |
| 107 | + |
| 108 | + let mut size = std::mem::size_of::<u8>() // discriminator |
| 109 | + + std::mem::size_of::<u8>() // extension type |
| 110 | + + std::mem::size_of::<u32>() // length |
| 111 | + + std::mem::size_of::<u8>() // option |
| 112 | + + std::mem::size_of::<u32>() // data length |
| 113 | + + $length as usize; // allocated data space |
| 114 | + |
| 115 | + let mut instruction_data = Vec::with_capacity(size); |
| 116 | + instruction_data.push(discriminator); |
| 117 | + instruction_data.push($extension_type as u8); |
| 118 | + instruction_data.extend_from_slice(&u32::to_le_bytes($length as u32)); |
| 119 | + instruction_data.push(1); |
| 120 | + instruction_data.extend_from_slice(&u32::to_le_bytes($length as u32)); |
| 121 | + |
| 122 | + instruction_data |
| 123 | + }}; |
| 124 | +} |
0 commit comments