-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathoptimizers.py
221 lines (184 loc) · 8.33 KB
/
optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import numpy as np
from torch.optim import Optimizer
from torch.distributions import Bernoulli, Normal
class SGD(Optimizer):
"""
Stochastic gradient descent. Also includes implementations of momentum,
Nesterov's momentum, L2 regularization, SGDW and Learning Rate Dropout.
"""
def __init__(self, params, lr, mu=0, nesterov=False, weight_decay=0, lrd=1):
defaults = {'lr': lr, 'mu': mu, 'nesterov': nesterov, 'weight_decay': weight_decay, 'lrd': lrd}
super(SGD, self).__init__(params, defaults)
def step(self):
"""
Performs a single optimization step.
"""
for group in self.param_groups:
lr = group['lr']
mu = group['mu']
nesterov = group['nesterov']
weight_decay = group['weight_decay']
lrd_bernoulli = Bernoulli(probs=group['lrd'])
if mu != 0 and 'v' not in group:
group['v'] = []
if nesterov:
group['theta'] = []
for param in group['params']:
group['v'].append(torch.zeros_like(param))
if nesterov:
theta_param = torch.ones_like(param).mul_(param.data)
group['theta'].append(theta_param)
for idx, param in enumerate(group['params']):
param.grad.data -= weight_decay * param.data
lrd_mask = lrd_bernoulli.sample(param.size()).to(param.device)
if mu != 0:
v = group['v'][idx]
v = mu * v - lr * param.grad.data
group['v'][idx] = v
if nesterov:
group['theta'][idx] += lrd_mask * v
param.data = group['theta'][idx] + mu * v
else:
param.data += lrd_mask * v
else:
param.data -= lrd_mask * lr * param.grad.data
class Adam(Optimizer):
"""
Adam as proposed by https://arxiv.org/abs/1412.6980.
Also includes a number of proposed extensions to the the Adam algorithm,
such as Nadam, L2 regularization, AdamW, RAdam and Learning Rate Dropout.
"""
def __init__(self, params, lr, beta1=0.9, beta2=0.999, nesterov=False, l2_reg=0, weight_decay=0, rectified=False, lrd=1, eps=1e-8):
defaults = {'lr': lr, 'beta1': beta1, 'beta2': beta2, 'nesterov': nesterov, 'l2_reg': l2_reg,
'weight_decay': weight_decay, 'rectified': rectified, 'lrd': lrd, 'eps': eps}
super(Adam, self).__init__(params, defaults)
def step(self):
"""
Performs a single optimization step.
"""
for group in self.param_groups:
lr = group['lr']
beta1 = group['beta1']
beta2 = group['beta2']
nesterov = group['nesterov']
l2_reg = group['l2_reg']
weight_decay = group['weight_decay']
rectified = group['rectified']
lrd_bernoulli = Bernoulli(probs=group['lrd'])
eps = group['eps']
if 'm' not in group and 'v' not in group:
group['m'] = []
group['v'] = []
group['t'] = 1
if nesterov:
group['prev_grad'] = []
for param in group['params']:
group['m'].append(torch.zeros_like(param))
group['v'].append(torch.zeros_like(param))
if nesterov:
group['prev_grad'].append(torch.zeros_like(param))
for idx, param in enumerate(group['params']):
if l2_reg:
param.grad.data += l2_reg * param.data
if nesterov:
grad = group['prev_grad'][idx]
else:
grad = param.grad.data
lrd_mask = lrd_bernoulli.sample(param.size()).to(param.device)
m = group['m'][idx]
v = group['v'][idx]
t = group['t']
m = beta1 * m + (1 - beta1) * grad
v = beta2 * v + (1 - beta2) * grad**2
m_hat = m / (1 - beta1**t)
v_hat = v / (1 - beta2**t)
if nesterov:
group['prev_grad'][idx] = param.grad.data
if rectified:
rho_inf = 2 / (1 - beta2) - 1
rho = rho_inf - 2 * t * beta2**t / (1 - beta2**t)
if rho >= 5:
numerator = (1 - beta2**t) * (rho - 4) * (rho - 2) * rho_inf
denominator = (rho_inf - 4) * (rho_inf - 2) * rho
r = np.sqrt(numerator / denominator)
param.data += - lrd_mask * lr * r * m_hat / (torch.sqrt(v) + eps)
else:
param.data += - lrd_mask * lr * m_hat
else:
param.data += - lrd_mask * lr * m_hat / (torch.sqrt(v_hat) + eps)
if weight_decay:
param.data -= weight_decay * param.data
group['m'][idx] = m
group['v'][idx] = v
group['t'] += 1
class RMSProp(Adam):
"""
RMSprop as proposed by http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
Note that this implementation, unlike the original RMSprop, uses bias-corrected moments.
"""
def __init__(self, params, lr, beta2):
super(RMSProp, self).__init__(params, lr, beta2=beta2, beta1=0)
class Lookahead(Optimizer):
"""
Lookahead Optimization as proposed by https://arxiv.org/abs/1907.08610.
This is a wrapper class that can be applied to an instantiated optimizer.
"""
def __init__(self, optimizer, k=5, alpha=0.5):
self.optimizer = optimizer
self.k = k
self.alpha = alpha
self.param_groups = optimizer.param_groups
self.counter = 0
for group in optimizer.param_groups:
group['phi'] = []
for param in group['params']:
phi_param = torch.ones_like(param).mul_(param.data)
group['phi'].append(phi_param)
def step(self):
if self.counter == self.k:
for group_idx, group in enumerate(self.param_groups):
for idx, _ in enumerate(group['phi']):
theta = self.optimizer.param_groups[group_idx]['params'][idx].data
group['phi'][idx] = group['phi'][idx] + self.alpha * (theta - group['phi'][idx])
self.counter = 0
else:
self.counter += 1
self.optimizer.step()
class GradientNoise(Optimizer):
"""
Gradient Noise as proposed by https://arxiv.org/abs/1511.06807.
This is a wrapper class that can be applied to an instantiated optimizer.
"""
def __init__(self, optimizer, eta=0.3, gamma=0.55):
self.optimizer = optimizer
self.eta = eta
self.gamma = gamma
self.t = 0
self.param_groups = optimizer.param_groups
def step(self):
normal = torch.empty(1).normal_(mean=0, std=np.sqrt(self.eta/((1+self.t)**self.gamma)))\
.to(self.optimizer.param_groups[0]['params'][0].device)
for group_idx, group in enumerate(self.param_groups):
for idx, param in enumerate(group['params']):
self.optimizer.param_groups[group_idx]['params'][idx].grad.data += normal
self.optimizer.step()
self.t += 1
class GradientDropout(Optimizer):
"""
Gradient dropout as proposed by https://arxiv.org/abs/1912.00144.
This is a wrapper class that can be applied to an instantiated optimizer.
Note that this method does not improve optimization significantly and
is only here for comparison to Learning Rate Dropout.
"""
def __init__(self, optimizer, grad_retain=0.9):
self.optimizer = optimizer
self.grad_retain = grad_retain
self.grad_bernoulli = Bernoulli(probs=grad_retain)
self.param_groups = optimizer.param_groups
def step(self):
for group_idx, group in enumerate(self.param_groups):
for idx, param in enumerate(group['params']):
grad_mask = self.grad_bernoulli.sample(param.size()).to(param.device)
self.optimizer.param_groups[group_idx]['params'][idx].grad.data *= grad_mask
self.optimizer.step()