forked from akhmedsakip/tda-emotion-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments_landscapes.py
82 lines (72 loc) · 3.3 KB
/
experiments_landscapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler, MinMaxScaler, LabelEncoder
from sklearn.metrics import confusion_matrix, classification_report, f1_score
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.decomposition import PCA
FEATURES_PATH = 'features_landscapes.csv'
NUM_SPLITS = 100
# Load the features/labels from a .csv file with the path specified in the function's argument
# The last column stands for the emotion label, so features are all the columns before that
def load_features(path):
df = pd.read_csv(path)
X = df.iloc[:, :-1].values
y = df['label'].values
return X, y
# Scale the features according to the passed argument specifying the scaling type (standard/minmax scaling, no scaling)
def scale_features(X, type):
if type == 'standard':
scaler = StandardScaler()
elif type == 'minmax':
scaler = MinMaxScaler()
elif type == 'none':
return X
else:
raise Exception("No valid scaler type passed.")
return scaler.fit_transform(X)
# Perform dimensionality reduction pf the features via PCA based on the argument specifying n_components argument
# of scikit-learn's PCA
def reduce_features(X, n_components):
if n_components == 'none':
return X
reducer = PCA(n_components=n_components)
return reducer.fit_transform(X)
# Perform label encoding
def encode_labels(y):
encoder = LabelEncoder()
return encoder.fit_transform(y)
X_loaded, y_loaded = load_features(FEATURES_PATH)
approaches = {}
# Looping through all the approaches
for scaler in ['none', 'standard', 'minmax']:
for reducer in ['none', 10, 0.80]:
for classifier in ['rfc', 'knn', 'svc', 'mlp']:
scores = []
# Looping through all the train-test splits of data
for i in range(NUM_SPLITS):
X, y = X_loaded.copy(), y_loaded.copy()
X = scale_features(X, type=scaler)
X = reduce_features(X, n_components=reducer)
y = encode_labels(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Running the respective algorithms of scikit-learn
if classifier == 'rfc':
clf = RandomForestClassifier(n_estimators=100)
elif classifier == 'knn':
clf = KNeighborsClassifier(n_neighbors=5)
elif classifier == 'svc':
clf = SVC(kernel='rbf')
elif classifier == 'mlp':
clf = MLPClassifier()
clf.fit(X_train, y_train)
score = f1_score(y_test, clf.predict(X_test), average='micro')
# Appending the f1-scores to the list of the splits' scores
scores.append(score)
scores = np.array(scores)
# Filling the dictionary with the mean and stdev of f1-scores for each split
approaches[(scaler, reducer, classifier)] = (np.mean(scores), np.std(scores))
print(approaches)