forked from gosh-dre/nlp_renal_biopsy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrb_disagreement_script.py
208 lines (185 loc) · 6.88 KB
/
rb_disagreement_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse
import shutil
from datetime import datetime
from pathlib import Path
from src.preprocessing.guidelines import EntityGuidelines
from src.renal_biopsy.preprocessor import RenalBiopsyProcessor
from src.utils.json import save_json
from src.utils.general import write_metadata_file
from automated_annotation.disagreement import DisagreementAnnotator
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--backend",
help="Model backend (ollama or llamacpp)",
choices=["ollama", "llamacpp"],
required=True,
)
parser.add_argument(
"--root_dir", help="Root directory for data modality", required=True, type=str
)
parser.add_argument(
"--model_1_name", help="First LLM to use", required=True, type=str
)
parser.add_argument(
"--model_2_name", help="Second LLM to use", required=True, type=str
)
parser.add_argument(
"--n_shots",
help="Number of few-shot samples to use in prompt",
default=2,
type=int,
)
parser.add_argument(
"--n_prototype",
help="Number of samples to run (max is 2111)",
default=1,
type=int,
)
parser.add_argument(
"--disagreement_threshold",
help="Threshold for clinician review",
default=0.3,
type=float,
)
parser.add_argument(
"--include_guidelines",
help="Include entity guidelines in prompt?",
action="store_true",
)
parser.add_argument(
"--raw_data",
help="Name of raw report data file",
default="full_data.xlsx",
type=str,
)
args = parser.parse_args()
if args.n_prototype > 2111:
raise ValueError("n_prototype cannot exceed 2111.")
# Check file existence
root_dir = Path(args.root_dir)
required_files = {
"guidelines": root_dir / "data" / "guidelines.xlsx",
"raw_data": root_dir / "data" / args.raw_data,
}
for file_path in required_files.values():
if not file_path.exists():
raise FileNotFoundError(f"Required file not found: {file_path}")
# Create results directory
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
results_dir = root_dir / "data" / "runs" / timestamp
data_dir = results_dir / "data"
data_dir.mkdir(parents=True, exist_ok=True)
# Copy input files
for file_name, file_path in required_files.items():
if file_path.suffix == ".xlsx":
shutil.copy2(file_path, data_dir / file_path.name)
# Initialise metadata
metadata = {
"args": vars(args),
"total_annotation_start_time": None,
"total_annotation_end_time": None,
"disagreement_modelling_start_time": None,
"disagreement_modelling_end_time": None,
"reports_for_review": None,
"n_reports_for_review": None,
}
write_metadata_file(results_dir / "metadata.txt", metadata)
try:
# Create input JSON
eg = EntityGuidelines(required_files["guidelines"])
processor = RenalBiopsyProcessor(guidelines=eg)
input_json = processor.create_input_json(
data_path=required_files["raw_data"],
save_path=root_dir / "data/real_input.json",
full=True,
)
except Exception as e:
print(f"Error creating input JSON: {e}")
raise
try:
# Create disagreement annotator
da = DisagreementAnnotator(
model_path_1=args.model_1_name,
model_path_2=args.model_2_name,
backend=args.backend,
root_dir=str(root_dir),
)
metadata["total_annotation_start_time"] = datetime.now().strftime(
"%Y-%m-%d %H:%M:%S"
)
# Run model 1
if args.backend == "ollama":
model_1_answers = da.model_1.extract_with_known_entities(
input_json,
n_shots=args.n_shots,
n_prototype=args.n_prototype,
include_guidelines=args.include_guidelines,
)
save_json(model_1_answers, results_dir / "model_1_generated_answers.json")
model_1_predicted = da.model_1.convert_generated_answers_to_json(
generated_answers=model_1_answers,
input_json=input_json,
n_prototype=args.n_prototype,
)
else:
model_1_predicted = da.model_1.extract_with_known_entities(
input_json,
n_shots=args.n_shots,
n_prototype=args.n_prototype,
include_guidelines=args.include_guidelines,
)
save_json(model_1_predicted, results_dir / "model_1_predicted.json")
# Run model 2
if args.backend == "ollama":
model_2_answers = da.model_2.extract_with_known_entities(
input_json,
n_shots=args.n_shots,
n_prototype=args.n_prototype,
include_guidelines=args.include_guidelines,
)
save_json(model_2_answers, results_dir / "model_2_generated_answers.json")
model_2_predicted = da.model_2.convert_generated_answers_to_json(
generated_answers=model_2_answers,
input_json=input_json,
n_prototype=args.n_prototype,
)
else:
model_2_predicted = da.model_2.extract_with_known_entities(
input_json,
n_shots=args.n_shots,
n_prototype=args.n_prototype,
include_guidelines=args.include_guidelines,
)
save_json(model_2_predicted, results_dir / "model_2_predicted.json")
metadata["total_annotation_end_time"] = datetime.now().strftime(
"%Y-%m-%d %H:%M:%S"
)
except Exception as e:
print(f"Error during model execution: {e}")
raise
try:
# Analyse disagreements
metadata["disagreement_modelling_start_time"] = datetime.now().strftime(
"%Y-%m-%d %H:%M:%S"
)
entity_answers, report_counts, review_reports = da.analyse_disagreements(
model_1_predicted,
model_2_predicted,
disagreement_threshold=args.disagreement_threshold,
n_prototype=args.n_prototype,
)
metadata["disagreement_modelling_end_time"] = datetime.now().strftime(
"%Y-%m-%d %H:%M:%S"
)
# Save results
save_json(entity_answers, results_dir / "entity_answers_over_corpus.json")
save_json(report_counts, results_dir / "disagreement_counts.json")
metadata["reports_for_review"] = review_reports
metadata["n_reports_for_review"] = len(review_reports)
except Exception as e:
print(f"Error during disagreement analysis: {e}")
raise
# Save final metadata
write_metadata_file(results_dir / "metadata.txt", metadata)
print(f"Results saved to {results_dir}")